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a b s t r a c t

In this paper we are concerned with the stabilizability at an equilibrium point of an ensemble of non
interacting half-spins. We assume that the spins are immersed in a static magnetic field, with dispersion
in the Larmor frequency, and are controlled by a time varying transverse field. Our goal is to steer the
whole ensemble to the uniform ‘‘down’’ position.

Two cases are addressed: for a finite ensemble of spins, we provide a control function (in feedback
form) that asymptotically stabilizes the ensemble to the ‘‘down’’ position, generically with respect to the
initial condition. For an ensemble containing a countable number of spins,we construct a sequence of con-
trol functions such that the sequence of the corresponding solutions pointwise converges, asymptotically
in time, to the target state, generically with respect to the initial conditions.

The control functions proposed are uniformly bounded and continuous.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Ensemble controllability (also called simultaneous controllabil-
ity) is a notion introduced in [1–3] for quantum systems described
by a family of parameter-dependent ordinary differential equa-
tions; it concerns the possibility of finding control functions that
compensate the dispersion in the parameters and drive the whole
family (ensemble) fromsome initial state to someprescribed target
state.

Such an issue is motivated by recent engineering applications,
such as, for instance, quantum control (see for instance [3–6]
and references therein), distributed parameters systems and PDEs
[7–11], and flocks of identical systems [12].

General results for the ensemble controllability of linear and
nonlinear systems, in continuous and discrete time, can be found
in the recent papers [13–17].

This paper deals with the simultaneous control of an ensemble
of half-spins immersed on a magnetic field, where each spin is
described by a magnetization vector M ∈ R3, subject to the
dynamics dM

dt = −γM × B(r, t), where B(r, t) is a magnetic field
composed by a static component directed along the z-axis, and a
time varying component on the xy-plane, called radio-frequency
(rf) field, and γ denotes the gyromagnetic ratios of the spins. In
this system, since all spins are controlled by the same magnetic
fieldB(r, t), the spatial dispersion in the amplitude of themagnetic
field gives rise to the following inhomogeneities in the dynamics:
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rf inhomogeneity, caused by dispersion in the radio-frequency field,
and a spread in the Larmor frequency, given by dispersion of the
static component of the field. This problem arises, for instance, in
NMR spectroscopy (see [18] and references in [19,3,4]).

The task of controlling such system is wide, multi-faceted and
very rich, depending on the cardinality of the set of the spin to be
controlled (and the topology of this set), on the particular notion
of controllability addressed, and on the functional space where
control functions live.

The above-cited articles [1–3] are concerned with both rf in-
homogeneity and Larmor dispersion, with dispersion parameters
that belong to some compact domain D. The magnetization vector
of the system is thus a function on D, taking values in the unit
sphere of R3, and ensemble controllability has to be intended
as convergence in the L∞(D,R3)-norm. The controllability result
is achieved by means of Lie algebraic techniques coupled with
adiabatic evolution, and holds for both bounded and unbounded
controls.

In [4], the authors focus on systems subject to Larmor dis-
persions, and provide a complete analysis of controllability prop-
erties of the ensemble in different scenarios, such as: bounded/
unbounded controls; finite time/asymptotic controllability; ap-
proximate/exact controllability in the L2(D,R3) norm; bounded-
ness/unboundedness of the set D. In particular, results on exact
local controllability with unbounded controls are provided.

In this paper we consider an ensemble of Bloch equations
presenting Larmor dispersion, with frequencies belonging to some
bounded subset E ⊂ R. Coupling a Lyapunov function approach
with some tools of dynamical systems theory, we exhibit a control
function (in feedback form) that approximately drives, asymptoti-
cally in time and generically with respect to the initial conditions,
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all spins to the ‘‘down’’ position. Two cases are addressed: if the set
E is finite, our strategy provides exact exponential stabilizability in
infinite time, while in the case where E is a countable collection of
energies, our approach implies asymptotic pointwise convergence
towards the target state.

Feedback control is a widely used tool for stabilization of
control-affine systems (see for instance [20,21] and references
therein).

Concerning the stabilization of ensembles, we mention two
papers using this approach: in [19], the author aims at stabilizing
an ensemble of interacting spins along a reference trajectory; the
result is achieved by showing, by means of Lie-algebraic methods,
that the distance between the state of the system and the target
trajectory is a Lyapunov function. In [22], Jurdjevic–Quinn condi-
tions are applied to stabilize an ensemble of harmonic oscillators.

The feedback form of the control guarantees more robustness
with respect to open-loop controls, and gives rise to a continuous
bounded control, more easy to implement in practical situations.
We stress that, in the finite dimensional case, the implementation
of the control requires the knowledge of the bulk magnetization of
all spins, which is accessible through classical measurements (see
for instance [23,19]). We finally remark that the control proposed
in this paper is very similar to the radiation damping effect arising
in NMR (see [24,25]); we comment this fact in the conclusion.

The structure of the paper is the following: in Section 2 we
state the problem in general form; in Section 3 we tackle the
finite dimensional case, while in Section 4 we analyze the case
of a countable family of systems. Section 5 is devoted to some
numerical results.

2. Statement of the problem

We consider an ensemble of non-interacting spins immersed in
a static magnetic field of strength B0(r), directed along the z-axis,
and a time varying transverse field (Bx(t), By(t), 0) (rf field), that
we can control. The Bloch equation for this system takes then the
form

∂M
∂t

(r, t) =

⎛⎝ 0 −B0(r) By(t)
B0(r) 0 −Bx(t)
−By(t) Bx(t) 0

⎞⎠M((r), t) (1)

(here for simplicity we set γ = 1). For more details, we mention
the monograph [26].

Since the dependence on the spatial coordinate r appears only
in B0(r), we can representM(r, t) as a collection of time-dependent
vectors Xe(t) = (xe(t), ye(t), ze(t)), where e = B0(r), each one
belonging to the unit sphere S2 ⊂ R3 and subject to the law(ẋe
ẏe
że

)
=

( 0 −e u2
e 0 u1

−u2 −u1 0

)(xe
ye
ze

)
, (2)

with u1(t) = −Bx(t) and u2(t) = By(t). The Larmor frequencies e
of the spins in the ensemble take value in some subset E ⊂ I of
a bounded interval I . Depending on the spatial distribution of the
spins, E could be a finite set, an infinite countable set, or an interval.

We are concerned with the following control problem:

(P) Design a control function u : [0,+∞) → R2 such that for every
e ∈ E the solution of Eq. (2) is driven to Xe = (0, 0,−1).

To face this problem, we consider the Cartesian product S =∏
e∈ES

2, whose elements are the collections X = {Xe}e∈E such that
Xe ∈ S2 for every e ∈ E . Depending on the structure of E , X can
be a finite or an infinite countable collection of states Xe ∈ S2,
or a function X : E → S2 belonging to some functional space.

The collection X of magnetic moments evolves according to the
equation

Ξ̇ = F (Ξ,u), Ξ(0) = X, (3)

where F denotes the collection F = {Fe}e∈E of tangent vectors to

S2, with Fe(X,u) =

(
0 −e u2
e 0 u1

−u2 −u1 0

)
Xe, and u = (u1, u2).

Some remarks on the existence of solutions for Eq. (3) are in
order, andwill be provided case by case. Assuming that these issues
are already fixed, we define the two states X+

= {Xe : ∀e ∈ E Xe =

(0, 0, 1)} and X−
= {Xe : ∀e ∈ E Xe = (0, 0,−1)}, and rewrite the

problem (P) as

(P′) Design a control function u : [0,+∞) → R2 such that the
solution of Eq. (3) is driven to X = X−.

We remark that the notion of convergence of X(·) towards X−

in problem (P′) has to be specified case by case, depending on the
structure of the set E and on the topology of S .

3. Finite dimensional case

First of all, we consider the case in which the set E is a finite
collection of pairwise distinct energies, that is E = (e1, . . . , ep)
such that ek ∈ I ∀k ∈ {1, . . . , p} and ek ̸= ej if i ̸= j. We recall
that the state space S of the system is the finite product of p copies
of S2.

Lemma 1. Assume that all energy levels ei are pairwise distinct. Let
I = {X ∈ S : xei = yei = 0 ∀ i = 1, . . . , p}. Then every solution of
the control system (2) with control⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1 =

p∑
i=1

yei

u2 =

p∑
i=1

xei

(4)

tends to I as t → +∞.

Proof. Consider the function V (X) =
∑p

i=1zei , and let Ξ(·) be
a solution of (3) with the control given in (4). We notice that
V̇ (Ξ(t)) = −

(∑p
i=1xei

)2
−
(∑p

i=1yei
)2, therefore it is non-positive

on the whole S , and it is zero only on the set M = {X ∈ S :∑p
i=1xei =

∑p
i=1yei = 0}. We can then apply La Salle invariance

principle to conclude that, for every initial condition,Ξ(t) tends to
the largest invariant subset of M.

Consider a trajectoryΞ(·) entirely contained inM. Since u = 0,
then for every i we have that

Ξi(t) =

(cos(eit) − sin(eit) 0
sin(eit) cos(eit) 0

0 0 1

)(xei (0)
yei (0)
zei (0)

)
.

By definition, for every t ≥ 0 it holds
∑p

i=1xei (t) =
∑p

i=1yei (t) = 0.
Differentiating these equalities p−1 times and evaluating at t = 0
we obtain the two conditions⎛⎜⎜⎜⎝

1 1 . . . 1
e1 e2 . . . ep
...

...

ep−1
1 ep−1

2 . . . ep−1
p

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
x1(0)
x2(0)
...

xp(0)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
...

0

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 . . . 1
e1 e2 . . . ep
...

...

ep−1
1 ep−1

2 . . . ep−1
p

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
y1(0)
y2(0)
...

yp(0)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
...

0

⎞⎟⎟⎠ .
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