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a b s t r a c t

We consider leader–followermulti-agent systems inwhich the leader executes the desired trajectory and
the followers implement the consensus algorithm subject to stochastic disturbances. The performance of
the leader–follower systems is quantified by the steady-state variance of the deviation of the followers
from the desired trajectory. We study the asymptotic scaling of the variance in directed lattices in one,
two, and three dimensions. We show that in 1D and 2D the variance of the followers’ deviation increases
to infinity as onemoves away from the leader, while in 3D the variance remains bounded regardless of the
network size. We prove that the variance of the followers scales as a square-root function of the distance
to the leader in 1D and a logarithmic function in 2D lattices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A leader–follower multi-agent system consists of a leader, who
provides the desired trajectory of themulti-agent system, and a set
of followers, who update their states using local relative feedback.
This control strategy has a variety of applications including forma-
tion of unmanned air vehicles, control of rigid robotic bodies, and
distributed estimation in sensor networks [1–11].

A fundamental question concerning the performance of the
leader–follower strategy is howwell the followers are able to track
the trajectory of the leader when they are subject to stochastic
disturbances. In large networks, the asymptotic scaling of the
variance of followers’ deviation from the desired trajectory is
determined by the network architecture. In this paper, we focus
on directed lattices in one, two, and three dimensions. We show
that as one moves away from the leader, the variance of the
followers increases unboundedly in 1D and 2D, whereas in 3D the
variance of the followers is bounded above by a constant that is
independent of the number of followers. These results resemble
the performance limitation of distributed consensus in undirected
tori [8]. For directed networks, our results for the asymptotic scaling
of the performance appear to be among the first in the literature.

Our contributions are twofold. First, we obtain analytical ex-
pressions for the steady-state variance of the deviation of the
followers from the leader. These expressions allow us to study the
distribution of variance in leader–follower systems with directed
lattices as the controller architecture. Second, we characterize the
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asymptotic scaling trends of the variance of the followers in 1D, 2D,
and 3D directed lattices.We show that in 1D and 2D the variance of
the followers scales asymptotically as a square-root function and a
logarithmic function, respectively, and in 3D the variance remains
bounded regardless of the network size.

This paper is organized as follows. In Section 2, we present our
main results for the performance of leader–follower systems on di-
rected lattices.We also discuss connection between our results and
random walks on undirected lattices. In Section 3 we summarize
our findings.

2. Leader–follower multi-agent systems on directed lattices

We consider the performance of leader–follower systems on
directed lattices. By exploiting the lower triangular Toeplitz struc-
ture of the modified Laplacian matrices, we obtain analytical ex-
pressions for the variance of followers and establish its asymptotic
scaling trends in large networks.

2.1. 1D lattice

Consider a set of N agents whose dynamics are modeled by the
single integrators
˙̄xn(t) = ūn(t) + d̄n(t), n = 1, . . . ,N,

where x̄n(t) denotes the position of the nth agent, ūn(t) is the
control input, and d̄n(t) is a zero-mean, unit-variance stochastic
disturbance. The control objective is to maintain a specified inter-
agent distance, δ, and to move the formation at a desired speed, vd.
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A leader, indexed by 0, is assumed to execute the desired trajectory
at all times, that is, x̄0(t) = vdt . The desired position of the nth
follower is given by x̄n,d(t) = vdt + nδ. Each follower controls its
position using the relative error from the agent ahead,

ūn(t) = −(x̄n(t) − x̄n−1(t) − δ) + vd.

In the deviation variables xn(t) := x̄n(t) − x̄n,d(t), un(t) :=

ūn(t)−vd, and d(t) := d̄(t), the followers implement the consensus
algorithm. Namely, each follower updates its state information
using the relative differences between itself and its neighbor (see
Fig. 1):

ẋn(t) = − (xn(t) − xn−1(t)) + dn(t), n = 1, . . . ,N.

Since the leader does not deviate from the desired trajectory, we
have x0(t) = 0, and ẋ0(t) = 0. In literature [7,11,12], this is re-
ferred to as noise-free leaders, as opposed to noise-corrupted lead-
ers whose states may deviate from the desired trajectory [6,12].
In this paper, we focus on the setup of noise-free leaders, that is,
x0(t) = 0.

We assume that the first follower has access to the state of the
leader,

ẋ1(t) = −x1(t) + d1(t).

By stacking the states of all followers into a vector, x(t) =

[ x1(t) . . . xN (t) ]T ∈ RN , the state–space representation of the
leader–follower system is given by

ẋ(t) = −L1x(t) + d(t), (1)

where L1 ∈ RN×N is themodified Laplacianmatrix of the 1D lattice.
In particular, L1 is lower triangular Toeplitz with 1 on the main
diagonal, −1 on the first subdiagonal, and zero everywhere else:

L1 =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

−1 1
. . .

...

0
. . .

. . . 0
0 · · · −1 1

⎤⎥⎥⎥⎥⎦ . (2)

When the disturbance, d(t) = [ d1(t) . . . dN (t)]T ∈ RN , is
absent, the deviation of the followers asymptotically converges
to zero. In other words, the followers converge to the desired
trajectory, that is, the trajectory of the leader. In the presence of the
disturbance, however, the followers converge to the desired state
in the mean value. The steady-state variance of the followers can
be used to quantify the deviation from the desired state:

Vn := lim
t→∞

E{x2n(t)}, n = 1, . . .,N,

where E{·} denotes the expectation operator.
We are interested in the scaling trend of the variance distribu-

tion as one moves away from the leader. Intuitively, the followers
who are farther away from the leader have larger steady-state
variance. It turns out that the variance of the followers increases
as a square-root function of the number of followers in 1D lattices.
This result is detailed in Lemma 1.

Lemma 1. The steady-state variance of the nth follower in the 1D
lattice (1) is given by

Vn =

n∑
i=1

(2i − 2)!
2 · 22i−2((i − 1)!)2

=
n (2n)!
22n n! n!

, n = 1, . . . ,N. (3)

Furthermore, Vn scales as a square-root function of n,

lim
n→∞

Vn
√
n

=

√
1
π

.

Fig. 1. The leader–follower system in 1D lattice.

To put Lemma 1 in context, recall that the variance of the
undirected 1D lattice scales as a linear function of n; see e.g., [9,10].
This implies that the control architecture with directed networks
outperforms the undirected counterpart in 1D lattices.

Proof. We begin with the steady-state covariance matrix

P := lim
t→∞

E{x(t)xT (t)} =

∫
∞

0
e−L1te−LT1 tdt. (4)

We compute the matrix exponential by using the inverse Laplace
transform e−L1t = L−1

{(sI + L1)−1
}. Since L1 is a lower triangular

Toeplitz matrix (see (2)), it follows that (sI + L1)−1 is also lower
triangular Toeplitz

(sI + L1)−1
∼

⎡⎣(s + 1)−1 0 0
(s + 1)−2 (s + 1)−1 0
(s + 1)−3 (s + 1)−2 (s + 1)−1

⎤⎦ .

In particular, (s + 1)−i is the ith entry of the first column. By using
the formula for the inverse Laplace transform

L−1
{(s + 1)−i

} =
t i−1

(i − 1)!
e−t , i = 1, . . . , n,

we obtain the nth diagonal element of the matrix e−L1te−LT1 t :(
e−L1te−LT1 t

)
n

=

n∑
i=1

(
t i−1

(i − 1)!
e−t

)2

.

Performing the integration from 0 to ∞ yields

Pn =

n∑
i=1

1
((i − 1)!)2

∫
∞

0

τ 2(i−1)e−τ

22i−1 dτ

=

n∑
i=1

1
((i − 1)!)2

·
Γ (2i − 1)

22i−1 ,

wherewe have used the change of variable τ = 2t and the formula
for the Gamma function

Γ (z) =

∫
∞

0
tz−1e−τdτ . (6)

Since Γ (z) = (z − 1)! for positive integers, we have the desired
formula (3).

To show the asymptotic scaling of Pn, we use Stirling’s formula

n! ≈
√
2πn

(n
e

)n
. (7)

Substituting into (3) with some algebra yields

Pn ≈
√
n/π. □

Remark 1. As a by-product of the proof, we have the following
result on the total variance normalized by the number of followers

ΠN :=
1
N

N∑
n=1

Vn =
(2N + 1)!
3 · 22NN!N!

.

Using Stirling’s formula (7), it can be shown that ΠN scales as a
square-root function of the number of followers

lim
N→∞

ΠN
√
N

=
2

3
√

π
.
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