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a b s t r a c t

A delayed feedback control framework for stabilizing unstable periodic orbits of linear periodic time-
varying systems is proposed. In this framework, act-and-wait approach is utilized for switching a delayed
feedback controller on and off alternately at every integer multiples of the period of the system. By
analyzing the monodromy matrix of the closed-loop system, we obtain conditions under which the
closed-loop system’s state converges towards a periodic solution under our proposed control law. We
discuss the application of our results in stabilization of unstable periodic orbits of nonlinear systems and
present numerical examples to illustrate the efficacy of our approach.
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1. Introduction

Stabilization of unstable periodic orbits of nonlinear systems
using delayed feedback control was first explored in [1]. In the de-
layed feedback control scheme, the difference between the current
state and the delayed state is utilized as a control input to stabilize
an unstable orbit. The delay time is set to correspond to the period
of the orbit to be stabilized so that the control input vanisheswhen
the stabilization is achieved.

Delayed feedback controllers have been used in many studies
for stabilization of the periodic orbits of both continuous- and
discrete-timenonlinear systems (see, e.g., [2–4], and the references
therein). More recently, [5] investigated delayed feedback control
of nonlinear systems that are subject to noise, [6] explored delayed
feedback control of a delay differential equation, and [7] utilized
delayed feedback control for stabilizing quasi periodic orbits. The
work [8] studied the relation between the delayed feedback control
approach and the harmonic oscillator-based control methods for
stabilizing periodic orbits in chaotic systems [9]. Furthermore, [10]
and [11] explored the situation where the period of the orbit and
the delay time in the delayed feedback controller do notmatch due
to imperfect information about the periodic orbit or inaccuracies in
the implementation of the controller.

The physical structure of delayed feedback control scheme is
simple. However, the analysis of the closed-loop system is difficult.
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This is due to the fact that to investigate the system under delayed
feedback control, one has to deal with delay-differential equations,
the state space of which is infinite dimensional. To deal with the
difficulties in the analysis of delay differential equations, an ap-
proach is to use approximation techniques (see, for instance, [12]
and [13]). Another approach was taken in [14]. There, stabilization
of a linear time-invariant system with a time-delay controller
was considered, and ‘‘act-and-wait’’ concept was introduced. This
concept is characterized by alternately applying and cutting off the
controller in finite intervals. It is shown in [14] that by utilizing
the act-and-wait concept, one may be able to derive a finite-
sized monodromy matrix for the closed-loop system, which can
then be used for stability analysis. Act-and-wait concept has been
extended to discrete-time systems in [15], and tested through
experiments in [16]. Furthermore, act-and-wait approach has been
used together with delayed feedback control in [17] for stabilizing
unstable fixed points of nonlinear systems, and more recently
in [18] for stabilizing unstable periodic orbits of nonautonomous
nonlinear systems.

In this paper, we explore the stabilization of periodic solutions
to linear periodic systemswith an act-and-wait-fashioned delayed
feedback control framework. In this framework, a switchingmech-
anism is utilized to turn the delayed feedback controller on and
off alternately at every integer multiple of the period of a given
linear periodic system. Act-and-wait scheme allows us to obtain
the monodromy matrix associated with the closed-loop system
under our proposed controller. We then use the obtained mon-
odromy matrix for obtaining conditions under which the closed-
loop system’s state converges to a periodic solution. Our main
motivation for studying a delayed feedback control problem for
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periodic systems stems from our desire to analyze the stability of a
periodic orbit of a nonlinear system under delayed feedback con-
trol. In this paper we apply our results for linear periodic systems
in analyzing periodic linear variational equations obtained after
linearizing nonlinear systems (under delayed feedback control)
around periodic trajectories corresponding to periodic orbits. The
uncontrolled nonlinear systems that we consider are autonomous
and as a result their stability assessment under the act-and-wait-
fashioned delayed feedback controller differs from the nonau-
tonomous case discussed in [18].

The paper is organized as follows. In Section 2, we introduce
our act-and-wait-fashioned delayed feedback control framework
for stabilizing periodic solutions of linear periodic systems; we
present a method for assessing the asymptotic stability of a peri-
odic solution of the closed-loop system under our proposed frame-
work. Furthermore, in Section 3 we discuss an application of our
results in stabilizing unstable periodic orbits of nonlinear systems.
We present illustrative numerical examples in Section 4. Finally,
we conclude our paper in Section 5.

We note that a preliminary version of this work was pre-
sented in [19]. In this paper, we provide additional discussions and
examples.

2. Delayed feedback stabilization of periodic orbits

In this section, we provide the mathematical model for a lin-
ear periodic time-varying system and introduce a new delayed
feedback control framework based on act-and-wait approach. We
then characterize a method for evaluating convergence of state
trajectories of a closed-loop linear time-varying periodic system
towards a periodic solution.

2.1. Linear periodic time-varying system

Consider the linear periodic time-varying system

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, t ≥ t0, (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input,
and A(t) ∈ Rn×n and B(t) ∈ Rn×m are periodic matrices with
period T > 0, that is, A(t + T ) = A(t) and B(t + T ) = B(t),
t ≥ t0. For simplicity of exposition, we assume t0 = 0 for the
rest of the discussion because the case where t0 ̸= 0 can be
similarly handled. Furthermore, we assume that the uncontrolled
(u(t) ≡ 0) dynamics possess a periodic solution x(t) ≡ x∗(t) with
period T satisfying x∗(t + T ) = x∗(t), t ≥ 0. It follows from
Floquet’s theorem that there exists such a periodic solution to the
uncontrolled system (1) of period T if and only if there exists a
nonsingularmatrix C ∈ Rn×n possessing 1 in its spectrumsuch that
V (t + T ) = V (t)C , where V (t) denotes a fundamental matrix of the
uncontrolled system (1). Moreover, note that since x(t) ≡ x∗(t) is
a T -periodic solution of the uncontrolled system (1), x(t) ≡ αx∗(t)
is also a T -periodic solution for all α ∈ R, that is, x(t) ≡ αx∗(t)
satisfies (1) with u(t) ≡ 0.

We investigate the asymptotic stability of periodic solutions
of the closed-loop system (1) under the delayed feedback control
input

u(t) = −g(t)F (x(t) − x(t − T )), (2)

where F ∈ Rm×n is a constant gain matrix and

g(t) ≜
{
0, 2kT ≤ t < (2k + 1)T ,

1, (2k + 1)T ≤ t < 2(k + 1)T ,
k ∈ N0 (3)

is a time-varying function that switches the controller on and off
alternately at every integer multiples of the period T .

Note that the feedback term characterized in (2) vanishes after
the periodic solution is stabilized. Specifically, for x(t) ≡ x∗(t), we
have u(t) = 0, t ≥ 0, since x(t) = x(t − T ).

We remark that our control approach is a specific case of the act-
and-wait approach introduced in [14]. In particular, in our control
law (2), both the acting and the waiting durations have length
T . Specifically, in every 2T period, the controller first waits for a
duration of length T , and then acts for a duration of length T . Note
that the controllers in [14] aremore general in the sense that acting
andwaiting times need not be equal. In Section 4, we also consider
different switching functions g(t) that lead to different acting and
waiting times.

The reason why g(t) is set to be a time-varying function can be
understood if we compare it to the case where g(t) is constant. For
instance, if g(t) ≡ 1 in (2), then (1) becomes

ẋ(t) = (A(t) − B(t)F )x(t) + B(t)Fx(t − T ), (4)

which is a delay-differential equation. Analysis of the solution of
(4) is difficult, as the state space associated with (4) is infinite-
dimensional.

On the other hand, for the linear periodic system

ẋ(t) = A(t)x(t), A(t) = A(t + T ), (5)

where there are no delay terms, stability of an equilibrium solution
can be assessed by analyzing the corresponding monodromy ma-
trix. Let Φ(·, ·) denote the state-transition matrix of (5). The mon-
odromy matrix associated with the T -periodic system (5) is given
by Φ(T , 0) ∈ Rn×n. The eigenvalues of the monodromy matrix,
knownas the Floquetmultipliers, are essential in the analysis of the
long-term behavior of the state-transition matrix of (5), because

Φ(t + kT , 0) = Φ(t, 0)Φk(T , 0), k ∈ N0. (6)

Moreover, the state of the periodic system (5) satisfies

x((k + 1)T ) = Φx(kT ), k ∈ N0.

Observe that if g(t) ≡ 1 in (2), we would not be able to find
a homogeneous expression in the form of (5), let alone find a
corresponding ‘‘monodromy matrix’’, because of the existence of
the delay term.

However, in our case, following the act-and-wait approach, we
define g(t) as in (3) as a switching function. Consequently, we are
able to construct a monodromy matrix Λ ∈ Rn×n for the closed-
loop system (1), (2) with the doubled period 2T such that

x(2(k + 1)T ) = Λx(2kT ), k ∈ N0. (7)

Note that the spectrum of the monodromy matrix Λ characterizes
long-term behavior of the state trajectory.

In the following sections, we first derive the monodromy ma-
trix, and then we present conditions for the convergence of the
state trajectory towards a periodic solution of the closed-loop
system (1), (2).

2.2. Monodromy matrix

In this section, we obtain the monodromy matrix associated
with the closed-loop system given by (1), (2). In our derivations,
we useΦ(·, ·) to denote the state-transitionmatrix associatedwith
(5). Furthermore, let Υ (·, ·) denote the state-transition matrix for
the linear T -periodic system

ẋ(t) = (A(t) − B(t)F )x(t). (8)

Now, let T0(k) ≜ [2kT , (2k+1)T ), T1(k) ≜ [(2k+1)T , 2(k+1)T ),
k ∈ N0. Note that when t ∈ T1(k), the controller is on, that is,
g(t) = 1. Hence, it follows from (1) and (2) that for t ∈ T1(k),

ẋ(t) = (A(t) − B(t)F )x(t) + B(t)Fx(t − T ). (9)
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