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a b s t r a c t

In this paper we study the notion of estimation entropy established by Liberzon and Mitra. This quantity
measures the smallest rate of information about the state of a system above which an exponential state
estimationwith a given exponent is possible.We show that this concept is closely related to theα-entropy
introduced by Thieullen andwe give a lower estimate in terms of Lyapunov exponents, assuming that the
system preserves a volumemeasure, which includes all Hamiltonian and symplectic systems. Although in
its current formmainly interesting from a theoretical point of view, our result could be a first step towards
a more practical analysis of state estimation under communication constraints.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The advent of computer-based and digitally networked control
systems challenged the assumption of classical control theory that
controllers and actuators have access to continuous-valued state
information. This has led to massive research efforts with the
aim to understand how networked systems with communication
constraints between their components can be modeled and an-
alyzed and how controllers for such systems can be designed. A
foundational problem in this field is to determine the smallest rate
of information abovewhich a certain control or estimation task can
be performed. There is a vast amount of literature on this topic,
an overview of which is provided, e.g., in the surveys [1,2] and
monographs [3–6]. Naturally, entropy concepts play a major role
in describing such extremal information rates. Quantities named
topological feedback entropy, invariance entropy or stabilization en-
tropy have been introduced and used to describe and compute
the smallest information rates for corresponding control problems
(cf. [7,4,8]). These concepts are defined in a similar fashion as the
well-known entropy notions in dynamical systems, such as metric
or topological entropy (cf. [9,10]), and their study reveals a lot of
similarities to those dynamical concepts of entropy, but sometimes
also very different features.

In the problem of state estimation under communication con-
straints, state measurements are transmitted through a commu-
nication channel with a finite data rate to an estimator. The aim
of the estimator is to build a function from the sampled mea-
surements which approximates the real trajectory exponentially
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as time goes to infinity, with a given exponent. The possibility of
such an estimation is crucial for many control tasks. This problem
was studied in [11,5] for linear systems in a stochastic framework
with the objective to bound the estimation error in probability.
Here the well-known criterion (known as the data-rate theorem)
was obtained, which states that the critical channel capacity is
given by the sum of the unstable eigenvalues of the dynamical
matrix. The first papers to study estimation under communica-
tion constraints for nonlinear deterministic systems were [12–16].
In [15,16], Matveev and Pogromsky studied three state estima-
tion objectives of increasing strength for discrete-time nonlinear
systems. For the weakest one, the critical bit rate was shown to
be equal to the topological entropy. For the other ones, general
upper and lower bounds were obtained which can be computed
directly from the right-hand side of the equation generating the
dynamical system. Similar studies in stochastic frameworks can be
found in [17,18].

In [12–14], Liberzon and Mitra characterized the smallest bit
rate for an exponential state estimation with a given exponent
α for a continuous-time system on a compact subset K of its
state space. As a measure for this smallest rate they introduced a
quantity named estimation entropy hest(α, K ), which coincideswith
the topological entropy onK whenα = 0, but forα > 0 is no longer
a purely topological quantity. Furthermore, they derived a general
lower bound as well as an upper bound C of hest(α, K ) in terms of
α, the dimension of the state space and a Lipschitz constant of the
dynamical system. They also provided an algorithm accomplishing
the estimation objective with bit rate C .

The system considered in [12–14] is a flow (φt )t∈R generated
by an ordinary differential equation ẋ = f (x) on Rn and the
initial conditions for which the state estimation is to be performed
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are constrained to a compact subset K ⊂ Rn. For any exponent
α ≥ 0, the estimation entropy hest(α, K ) is defined similarly to the
topological entropy of a continuous map on a non-compact metric
space, as in Bowen [19], using (n, ε)-spanning or (n, ε)-separated
sets. More precisely, the classical Bowen–Dinaburg-metrics are
replaced by metrics of the form

dα
T (x, y) = max

0≤t≤T
eαtd(φt (x), φt (y)), (1)

and the rest of the definition is completely analogous to the def-
inition of topological entropy. Liberzon and Mitra only consider
norm-induced metrics d(x, y) = ∥x − y∥. However, if one allows
more general metrics, it is easy to see that the quantity hest(α, K )
depends on the choice of the metric, even in the case when K is
φ-invariant. Hence, in contrast to the topological entropy (on a
compact space), hest(α, K ) is not a purely topological quantity.

The main result of this paper is based on the observation that a
similar concept has been studied by Thieullen in [20], though with
a completely different motivation, namely estimating the fractal
dimension of compact attractors in infinite-dimensional systems.
Thieullen studied the exponential asymptotic behavior of the vol-
umes of balls BT

α(x, ε) in the metric (1), with a volume-preserving
diffeomorphism f of a compact manifold in place of the flow φ. His
main result in [20] to some extent generalizes Pesin’s formula for
the metric entropy of a diffeomorphism preserving an absolutely
continuous measure m, in that it expresses the exponential decay
rate of m(BT

α(x, ε)) for a.e. x in terms of the Lyapunov exponents
of f and the exponent α. For α = 0, it was proved by Katok and
Brin [21] that the integral over the exponential decay rate equals
the metric entropy of f .

In this paper, we build a connection between the estimation
entropy of Liberzon and Mitra and the α-entropy of Thieullen,
using arguments from the proof of the classical variational prin-
ciple for entropy as presented by Misiurewicz in [22]. To this
end, we first generalize the definition of estimation entropy to
discrete- and continuous-time systems on metric spaces. Then
we reinterpret the estimation entropy as the topological entropy
of a non-autonomous dynamical system. The time-dependency
which makes the system non-autonomous enters by introducing
the time-dependent metric dn(x, y) = eαnd(x, y) on the state
space, where d(·, ·) is the given metric. Then we can use ideas
and results proved in [23] for general non-autonomous systems
in order to provide a lower bound for the estimation entropy of a
C1+ε-diffeomorphism f on a smooth compact manifold, preserving
an absolutely continuousmeasureµwith a density that is bounded
and bounded away from zero. Namely, the estimation entropy
of f with respect to the exponent α is lower-bounded by the
integral over the exponential decay rate of µ(Bn

α(x, ε)), expressed
in terms of the µ-Lyapunov exponents and the exponent α, using
Thieullen’s result.

We first introduce the notions of estimation and topological en-
tropy in Section 2. Section 3 contains themain results, in particular
the lower bound Theorem 4. Section 4 provides examples and a
related discussion of the practicality of Theorem 4 from an applied
point of view. In Section 5, we end with some concluding remarks.
A technical part of the proof and a review of the Multiplicative
Ergodic Theorem are shifted to the Appendix.

2. Preliminaries

Notation: We write #S for the cardinality of a set S. The open
ball of radius ε > 0 centered at a point x in a metric space X is
denoted by B(x, ε). The diameter of a subset A ⊂ X is diam A :=

supx,y∈Ad(x, y). The distance from a point x ∈ X to a set A ⊂ X is
defined by dist(x, A) := infa∈Ad(x, a). If T ⊂ R, we write T≥0 =

{t ∈ T : t ≥ 0} and T>0 = {t ∈ T : t > 0}. If U is an

open cover of a compact metric space (X, d), we write L(U) for the
Lebesgue number of U , i.e., the greatest ε > 0 such that every ball
of radius ε is contained in an element of U . The join of open covers
U1, . . . ,Un, denoted by

⋁n
i=1Ui, is the open cover that consists of all

intersections U1 ∩ . . .∩Un with Ui ∈ Ui. If (Ω,F, µ) is a probability
space and P a finite measurable partition of Ω , the entropy of
P is defined by Hµ(P) := −

∑
P∈Pµ(P)log2µ(P). If s ∈ R, then

⌈s⌉ = min{k ∈ Z : k ≥ s} and s+ = max{0, s}.
We first introduce a notion of estimation entropy generalizing

the one in [12–14]. Let (X, d) be ametric space and K ⊂ X compact.
We consider a continuous (semi-) dynamical system φ : T ×

X → X , (t, x) ↦→ φt (x), where T ∈ {Z≥0,R≥0}. All intervals are
understood to be intersected with T, e.g., [0, n] = {0, 1, . . . , n} if
T = Z≥0.

The estimation entropy hest(α, K ) = hest(α, K ; φ) for an α ≥ 0
is defined as follows. For T ∈ T>0, ε > 0, a set X̂ = {x̂i(·)}ni=1 of
functions x̂i : [0, T ] → X is (T , ε, α, K )-approximating if for each
x ∈ K there is x̂i ∈ X̂ with

d(φt (x), x̂i(t)) < εe−αt for all t ∈ [0, T ].

We write sest(T , ε, α, K ) for the minimal cardinality of a
(T , ε, α, K )-approximating set and define

hest(α, K ) := lim
ε↓0

lim sup
T→∞

1
T
log sest(T , ε, α, K ).

Here we use log = log2 when T = Z≥0 and log = loge when T =

R≥0. Alternatively, we can define hest(α, K ) in terms of (T , ε, α, K )-
spanning sets, by allowing only trajectories of φ as approximating
functions: a set S ⊂ K is called (T , ε, α, K )-spanning if for each
x ∈ K there is y ∈ S with

d(φt (x), φt (y)) < εe−αt for all t ∈ [0, T ].

Writing s∗est(T , ε, α, K ) for theminimal cardinality of such a set, one
finds that

hest(α, K ) = lim
ε↓0

lim sup
T→∞

1
T
log s∗est(T , ε, α, K ).

A third possible definition uses the concept of (T , ε, α, K )-
separated sets: a subset E ⊂ K is (T , ε, α, K )-separated if for each
two x, y ∈ E with x ̸= y,

d(φt (x), φt (y)) ≥ εe−αt for some t ∈ [0, T ].

Writing n∗
est(T , ε, α, K ) for themaximal cardinality of a (T , ε, α, K )-

separated set, one can show that

hest(α, K ) = lim
ε↓0

lim sup
T→∞

1
T
log n∗

est(T , ε, α, K ).

We omit the proof that these definitions are equivalent, since it
works completely analogous to the case studied in [12–14]. Note
that for each T ∈ T>0,

dα
T (x, y) := max

0≤t≤T
eαtd(φt (x), φt (y))

defines a metric on X . We write BT
α(x, ε) for the ball of radius ε > 0

centered at x ∈ X in this metric.
Next we recall the notion of topological entropy for non-

autonomous dynamical systems as defined in [24,25]. A topological
non-autonomous dynamical system (NDS) is a pair (X∞, f∞), where
X∞ = (Xn)∞n=0 is a sequence of compact metric spaces (Xn, dn) and
f∞ = (fn)∞n=0 is an equicontinuous sequence of maps fn : Xn →

Xn+1. For any integers i ≥ 0 and n ≥ 1 we define

f 0i := idXi , f ni := fi+n−1 ◦ · · · ◦ fi+1 ◦ fi, f −n
i := (fi)−n.

If Un is an open cover of Xn for each n, we define the entropy of f∞
w.r.t. U∞ := (Un)n≥0 by

h(f∞;U∞) := lim sup
n→∞

1
n
logN

( n⋁
i=0

f −i
0 Ui

)
,
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