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a b s t r a c t

We propose a computational scheme for the solution of the so-calledminimum variance control problem
for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input
(random) sequence. In our approach, we utilize a state space framework in which the minimum variance
control problem is interpreted as a finite-horizon stochastic optimal control problem with incomplete
state information. We show that if the set of admissible control policies for the stochastic optimal
control problem consists exclusively of sequences of causal (non-anticipative) control laws that can be
expressed as linear combinations of all the past and present outputs of the system together with its past
inputs, then the stochastic optimal control problem can be reduced to a deterministic, finite-dimensional
optimizationproblem. Subsequently,we show that the latter optimizationproblemcanbe associatedwith
an equivalent convex program and in particular, a quadratically constrained quadratic program (QCQP),
by means of a bilinear transformation. Finally, we present numerical simulations that illustrate the key
ideas of this work.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We propose a computational framework for the characteri-
zation of control policies for a special class of stochastic opti-
mal control problems for discrete-time stochastic linear systems
with incomplete state information. Specifically, our objective is to
compute a control policy that will minimize the expected value
of a finite sum of cost-per-stage functions, which are (convex)
quadratic functions of the system’s output, subject to an explicit
constraint on (the expected value) of the ℓ2-norm of the input
(random) sequence. The CMVC problem can find many real world
applications in, for instance, the so-called web-forming processes
including thickness control of paper sheets, cold or hot rolled
sheets and coils, and plastic film extrusion by means of com-
pressive forces [1–3]. Another example is trajectory optimization
problems for uncertain dynamical systems in which the objective
is to minimize the dispersion of the endpoints of a representative
sample of their state trajectories around the terminal goal (mean)
state. The latter problem is also related to the problem of steering
the distribution of the uncertain state of a stochastic dynamical
system to a goal state distribution, which has recently received
some notable attention [4–6].

Literature review: The CMVC problem in the absence of con-
straints reduces to the standard Minimum Variance Control (MVC)
problem, which is a well studied problem in the literature [7–9].
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Typically, the scope of the MVC problem is limited to SISO systems
and its solution is based on transfer function design techniques
given that in its state-space formulation, the MVC problem cor-
responds to a singular linear quadratic stochastic optimal control
problem whose performance index does not reflect any penalty
on the control effort. For this reason, one cannot use the stan-
dard Riccati-based techniques used for similar, but non-singular,
problems and may have to resort instead to more sophisticated
geometric techniques [10,11]. It is well-known that the optimal
control policy that solves the MVC problem can be characterized
by passing the system’s output through a certain stable linear
filter [12]. The previous interpretation of the solution to the MVC
problem implies that the control input that should be applied to the
system at each stage can be expressed as a linear combination of
the past and present output measurements of the system together
with its past inputs. This observationwill play an instrumental role
in the proposed solution approach for the CMVC problem.

One of the main limitations of the most popular transfer
function design techniques for the MVC problem is that their
applicability requires the solution of the so-called Diophantine
(polynomial) equation, which can be a complex task, especially
for high-dimensional and/or time-varying systems [13]. Solution
techniques for the MVC problem based on state-space methods
have also appeared in the literature [13–15]. A comprehensive pre-
sentation and analysis of several formulations of theMVC problem
for stochastic linear systems with an emphasis placed on the so-
called ARMAX (Auto-Regressive, Moving Average, with eXogenous
input) model can be found in [12, pp. 236–251].
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Main contribution: This work proposes a computational solu-
tion approach for the CMVC problem, which is based on convex
optimization techniques [16]. The main idea of the proposed solu-
tion approach is centered around the interpretation of the CMVC
problem as a stochastic optimal control problem with incomplete
state information. This particular formulation of the CMVC prob-
lem will allow us to leverage certain convex optimization tools
and techniques, which are used in control design problems for
discrete-time stochastic linear systems (see, for instance, [17–22]),
for the development of an algorithmic procedure for the efficient
computation of its solution. Motivated by the structure of the
optimal policy of the standard MVC problem, we will restrict our
search for the optimal control policy of the CMVC problem to
the set of sequences of causal (non-anticipative) control laws that
can be expressed as linear combinations of the past and present
output measurements of the system together with its past inputs.
Under this assumption, it turns out that the CMVC problem can
be reduced to a tractable deterministic convex program, which
can be addressed by means of efficient and robust computational
tools. It should be highlighted that this particular parametriza-
tion of the admissible control policies has its roots in the so-
called Youla–Kucera parametrization of all stabilizing controllers
for a given discrete-time linear system as well as the affine/linear
disturbance feedback parametrization for discrete-time stochastic
linear systems, which was proposed in [23]. For the reduction of
the stochastic optimal control problem to a convex program, we
will make use of some of the key ideas presented in [22]. Finally,
wewish to highlight that despite the fact that in the formulation of
the CMVC problem we only consider a single input constraint, the
proposed approach can be extended in a natural way to the case of
multiple similar state/input constraints. One canuse the solution to
the problem with such constraints as a high-level roadmap to the
control design problemand subsequently employmore specialized
techniques from, for instance, the literature of stochastic MPC
problems [17,20,24,25], to enforce either hard constraints or tight
chance constraints on the applied control inputs point-wisely in
time.

Structure of the paper: The remainder of the paper is organized
as follows. In Section 2, we formulate the CMVC problem, which
we subsequently reduce to a deterministic, finite-dimensional op-
timization problem, which may not be convex in general, in Sec-
tion 3. In Section 4, we show that by employing a certain bilinear
transformation, the previous optimization problem reduces to a
tractable convex program. Numerical simulations that illustrate
some of the key ideas of the proposed solution techniques are
presented in Section 5. Finally, Section 6 concludes the paper with
a summary of remarks.

2. Problem formulation

2.1. Notation

We denote by R and R≥0 the set of real numbers and the set
of non-negative real numbers, respectively, and by Rn and Rm×n

the set of n-dimensional real vectors and m × n real matrices,
respectively.Wewrite |α| to denote the 2-norm of a vector α ∈ Rn.
We write Z≥0 and Z>0 to denote the set of non-negative integers
and strictly positive integers, respectively. For a given N ∈ Z≥0, we
denote by TN the discrete set {0, . . . ,N} ⊂ Z≥0. Given a proba-
bility space (Ω,F, P) and N ∈ Z>0, we denote by ℓn2(TN ; Ω,F, P)
the Hilbert space of mean square summable random sequences
{x(t) : t ∈ TN} on (Ω,F, P), where x(t) is an n-dimensional
(random) vector for each t ∈ TN . Given {x(t) : t ∈ TN} ∈ ℓn2(TN ;

Ω,F, P), we write ∥x(·)∥ℓ2 to denote its norm in ℓn2(TN ; Ω,F, P),
that is, ∥x(·)∥ℓ2 := (E

[∑N
t=0|x(t)|

2])1/2 = (
∑N

t=0E
[
|x(t)|2

]
)1/2,

where E [·] denotes the expectation operator. Given a square ma-
trix A, we denote its trace by trace(A). The induced matrix 2-norm
ofA is denoted by ∥A∥2, where ∥A∥2 = (λmax(ATA))1/2 and λmax(M)
denotes the maximum eigenvalue of a real symmetric matrix M.
We write 0m×p (or simply, 0) and Im (or simply, I) to denote the
m × p zero matrix and the m × m identity matrix, respectively.
Furthermore, we denote by bdiag(A1, . . . ,Aℓ) the block diagonal
matrix whose diagonal blocks are matrices Ai, i ∈ {1, . . . , ℓ}, of
compatible dimensions. The set of N × N block square and lower
triangular (real) matrices whose blocks have dimensionm× nwill
be denoted byBLN (m, n); note thatBLN (m, n) ⊂ RNm×Nn. Wewill
denote the convex cone of n × n symmetric positive definite and
positive semi-definite matrices by Pn and Pn, respectively. Finally,
for a given a matrix A ∈ Pn, we will denote by A1/2 its (unique)
square root in Pn.

2.2. Formulation of the constrained minimum variance control prob-
lem

For a given N ∈ Z>0, let {A(t) ∈ Rn×n
: t ∈ TN−1}, {B(t) ∈

Rn×m
: t ∈ TN−1}, {C(t) ∈ Rn×p

: t ∈ TN−1}, {G(t) ∈ Rn×q
: t ∈

TN−1}, and {N(t) ∈ Rn×r
: t ∈ TN−1} denote known sequences of

matrices of appropriate dimensions. Let us also consider a discrete-
time stochastic linear system that satisfies the following stochastic
difference equation and output equation, respectively:

x(t + 1) = A(t)x(t) + B(t)u(t) + G(t)w(t), (1a)
y(t) = C(t)x(t) + N(t)ν(t), (1b)

for t ∈ TN−1, where x(0) = x0 is a random vector drawn from the
Gaussian distributionN (µ0,Σ0) withµ0 andΣ0 be, respectively, a
given vector in Rn and a given matrix in Pn. In addition, {x(t) : t ∈

TN}, {u(t) : t ∈ TN−1}, and {y(t) : t ∈ TN−1} denote, respectively,
the state, the control input, and the output (random) sequences
on a complete probability space (Ω,F, P). In addition, the control
input sequence {u(t) : t ∈ TN−1} is assumed to belong to
ℓm2 (TN−1; Ω,F, P) and to have finite k-moments for all k > 0.
We will henceforth refer to a control input sequence that satisfies
these properties as admissible. In addition, {w(t) : t ∈ TN−1} and
{ν(t) : t ∈ TN−1} are sequences of independent normal random
variables with zero mean and unit covariance, that is,

E [w(t)] = 0, E
[
w(t)w(τ )T

]
= δ(t, τ ) I, (2a)

E [ν(t)] = 0, E
[
ν(t)ν(τ )T

]
= δ(t, τ ) I, (2b)

for all t, τ ∈ TN−1, with δ(t, τ ) := 1, if t = τ , and δ(t, τ ) := 0,
otherwise. It is assumed that x0 and {w(t) : t ∈ TN−1} as well as
{w(t) : t ∈ TN−1} and {ν(t) : t ∈ TN−1} aremutually independent,
which implies that

E
[
w(t)ν(τ )T

]
= 0, (3a)

E
[
ν(t)xT0

]
= 0, E

[
w(t)xT0

]
= 0, (3b)

for all t, τ ∈ TN−1.
Our objective is to find a control policy that minimizes the ex-

pected value of a finite sum of cost-per-stage functions, which are
convex quadratic functions of the output measurement y(t) of the
stochastic linear system (1a)–(1b) as t runs through TN−1, subject
to an explicit inequality constraint on the ℓ2-norm of the input
sequence (realization of the control policy). We will assume that
the set of admissible control policies, which is denoted by Π , con-
sists of all control policies π which are sequences of control laws
κ(·; t) that are causal (non-anticipative), measurable functions of
the elements of the so-called information set up to time t . For a
given t ∈ TN−1, the information set, which is a randomdiscrete set,
is denoted as It and is defined as follows: It := Iy

t × Iu
t−1, where

Iy
t := {y(τ ) ∈ Rp

: τ ∈ Tt} and Iu
t−1 := {u(σ ) ∈ Rm

: σ ∈ Tt−1}.
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