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a b s t r a c t

In this paper, we study the singularities of differentially flat systems, in the perspective of providing
global or semi-global motion planning solutions for such systems: flat outputs may fail to be globally
defined, thus potentially preventing from planning trajectories leaving their domain of definition, the
complement of which we call singular. Such singular subsets are classified into two types: apparent and
intrinsic. A rigorous definition of these singularities is introduced in terms of atlas and local charts in the
framework of the differential geometry of jets of infinite order and Lie–Bäcklund isomorphisms. We then
give an inclusion result allowing to effectively compute all or part of the intrinsic singularities. Finally, we
show how our results apply to the global motion planning of the celebrated example of non holonomic
car.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Differential flatness has become a central concept in non-
linear control theory for the past two decades. See [1,2], the
overviews [3,4] and [5] for a thoroughgoing presentation.

Consider a non-linear system on a smooth n-dimensional man-
ifold X given by

ẋ = f (x, u) (1)

where x ∈ X is the n-dimensional state vector and u ∈ Rm the
input or control vector, withm ≤ n to avoid trivial situations.

We consider infinitely prolonged coordinates of the form
(x, u) ≜ (x, u, u̇, ü, . . .) ∈ X ×Rm

∞
≜ X ×Rm

×Rm
× · · · where the

latter cartesian product is made of a countably infinite number of
copies of Rm.

Roughly speaking, system (1) is said to be (differentially) flat1
at a point (x0, u0) ≜ (x0, u0, u̇0, . . .) ∈ X × Rm

∞
, if there exists
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1 This is not a rigorous definition but rather an informal presentation, without

advancedmathematics, of the flatness concept. Problems associated to this informal
definition are reported in [5, Section 5.2]. For a rigorous definition, in the context of
implicit systems, the reader may refer to Definitions 1 and 2 of Section 2.

anm-dimensional vector y = (y1, . . . , ym) satisfying the following
statements:

• y is a smooth function of x, u and time derivatives of u up to
a finite order β = (β1, . . . , βm), i.e. y = Ψ (x, u, u̇, . . . , u(β)),
where u(β) stands for (u(β1)

1 , . . . , u(βm)
m ) and where u(βi)

i is
the βith order time derivative of ui, i = 1, . . . ,m, in a
neighborhood of the point (x0, u0);
• y and its successive time derivatives ẏ, ÿ, . . . are locally

differentially independent in this neighborhood;
• x and u are smooth functions of y and its time derivatives up

to a finite order α = (α1, . . . , αm), i.e. (x, u) = Φ(y, ẏ, . . . ,
y(α)) in a neighborhood of the point (y0, ẏ0, . . .) ≜ (Ψ (x0, u0,

u̇0, . . . , u
(β)
0 ), Ψ̇ (x0, u0, u̇0, . . . , u

(β+1)
0 ), . . .).

Then the vector y is called flat output.
Note that the latter informal definition becomes rigorous if we

regard the above defined functions Φ and Ψ as smooth functions
over infinite order jet spaces endowed with the product topology2
[2,5–7]. They are then called Lie–Bäcklund isomorphisms and are
inverse one of each other (see [2,5]). However, these functions
may be defined on suitable neighborhoods that need not cover

2 Recall that in this topology, a continuous function only depends on a finite
number of variables, i.e. , in this context of jets of infinite order, on a finite number
of successive derivatives of u (see e.g. [5, Section 5.3.2]).
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the whole space. We thus may want to know where such iso-
morphisms do not exist at all, a set that may be roughly qualified
of intrinsically singular, thus motivating the present work: if two
points are separated by such an intrinsic singularity, it is intuitively
impossible to join them by a smooth curve satisfying the system
differential equations and, thus, to globally solve the motion plan-
ning problem.3

More precisely, the notions of apparent and intrinsic singularities
are introduced thanks to the construction of an atlas, that we call
Lie–Bäcklund atlas, where local charts are made of the open sets
where the Lie–Bäcklund isomorphisms, defining the flat outputs,
are non degenerated, in the spirit of [8,9] where a comparable
idea was applied to a quadcopter model. Intrinsic singularities are
then defined as points where flat outputs fail to exist, i.e. that are
contained in no above defined chart at all. Other types of singu-
larities are called apparent, as they can be ruled out by switching
to another flat output well defined in an intersecting chart. Our
intrinsic singularity notion may be seen as a generalization of the
one introduced in [10] in the particular case of two-input driftless
systems such as cars with trailers, and restricted to the so-called
x-flat outputs.

Our main result, apart from the above Lie–Bäcklund atlas and
singularities definition, then concerns the inclusion of a remark-
able and effectively computable set in the set of intrinsic singular-
ities. Note that, since finitely computable necessary and sufficient
conditions of non existence of flat output are not available in
general [5,11], an easily computable complete characterization of
the set of intrinsic singularities is not presently known and it may
be useful to label all or part of the singularities as intrinsic thanks
to their membership of another set.

To briefly describe this result, we start from the necessary
and sufficient conditions for the existence of local flat outputs of
meromorphic systems of [11].4 It consists in firstly transforming
the system (1) in the locally equivalent implicit form:

F (x, ẋ) = 0 (2)

where F is assumed meromorphic, and introducing the operator
τ , the trivial Cartan field on the manifold of global coordinates
(x, ẋ, ẍ, . . .), given by τ =

∑n
i=1
∑

j≥0x
(j+1)
i

∂

∂x(j)i
. Then, we compute

the diagonal or Smith–Jacobson decomposition [5,15] of the follow-
ing polynomial matrix:

P(F ) =
∂F
∂x
+
∂F
∂ ẋ
τ (3)

amatrix that describes the variational systemassociated to (2), and
that lies in the ring of matrices whose entries are polynomials in
the operator τ with meromorphic coefficients.

We prove that the set of intrinsic singularities contains the set
where P(F ) is not hyper-regular (see [5]). As a corollary, we deduce
that if an equilibrium point is not first order controllable, then it is
an intrinsic singularity.

These results are applied to the globalmotion planning problem
of thewell-known non-holonomic car, which is only used here as a
benchmark in order to show how the classical and simple flatness-
based motion planning methodology can be extended in presence
of singularities. It is also meant to help the reader verifying that
the introduced concepts, in the relatively arduous context of Lie–
Bäcklund isomorphisms, are nevertheless intuitive andwell suited
to this situation.

3 By global motion planning problem, we mean that two arbitrary points of the
infinite jet space associated to the system, once the set of intrinsic singularities
has been removed, can be joined by a system’s trajectory, and thus that this set
is connected by arcs.
4 Other approaches to flatness characterization may be found in [12–14].

Note that different approaches, also leading to global results,
have already been extensively developed in the context of non
holonomic systems, based on controllability, Lie brackets of vector
fields and piecewise trajectory generation by sinusoids [16–19],
or using Brockett–Coron stabilization results [20,21]. However,
though some particular nonholonomic systems, as the car ex-
ample, happen to be flat, our approach applies to the class of
flat systems which is different, including e.g. pendulum systems,
unmanned aerial vehicles and many others that do not belong to
the nonholonomic class (see [3–5,8,9]).

Remark that, in the car example, the obtained intrinsic singu-
larities are the same as the ones revealed in [16–19] where first
order controllability fails to hold, or, according to [20,21], where
stabilisation by continuous state feedback is impossible. However,
the degree of generality of this coincidence is not presently known.

The paper is organized as follows. In Section 2, we introduce the
basic language of Lie–Bäcklund atlas and charts. Then this leads to
a computational approach for calculating intrinsic singularities. In
particular, their links with the hyper-singularity of the polynomial
matrix (3) of the variational systemare established in Proposition 2
and Theorem 1, and then specialized in Corollary 1 to the case of
equilibrium points.

In Section 3.4, we apply our results to the non holonomic car.
We build an explicit Lie–Bäcklund atlas for this model, compute
the set of intrinsic singularities and apply the atlas construction
to trajectory planning where the route contains several apparent
singularities and starts and ends at intrinsically singular points.
Finally, conclusions are drawn in Section 4.

2. Lie–Bäcklund atlas, apparent and intrinsic singularities

Recall from the introduction that we consider the controlled
dynamical system in explicit form (1), where x evolves in some
n-dimensional manifold X . The control input u lies in Rm. Then the
system can be seen as the zero set of ẋ− f (x, u) in TX ×Rm, where
TX is the tangent bundle of X . From now on, we assume that the
Jacobian matrix ∂ f

∂u (x, u) has rank m for every (x, u).
Converting system (1) into its implicit form consists in elimi-

nating the input u or,more precisely, in computing its image by the
projection π from TX ×Rm onto TX to get the implicit relation (2),
where we assume that F : (x, ẋ) ∈ TX ↦→ Rn−m is a meromorphic
function, withm ≤ n.

Following [5,11], we embed the state space associated to (2)
into a diffiety (see [7]), i.e. into themanifoldX ≜ X×Rn

∞
, wherewe

have denoted by Rn
∞

the product of a countably infinite number of
copies of Rn, with coordinates x ≜ (x, ẋ, ẍ, . . . , x(k), . . .), endowed
with the trivial Cartan field:

τX ≜

n∑
i=1

∑
j≥0

x(j+1)i
∂

∂x(i)i
.

Note that τX is such that the elementary relations τXx(k) = x(k+1)
hold for all k ∈ N. The integral curves of both (1) and (2) thus
belong to the zero set of {F , τ kXF | k ∈ N} in X. However, there
might exist points x = (x, ẋ, ẍ, . . . , x(k), . . .) ∈ X such that the
fiber π−1(x, ẋ) above x is empty, i.e. such that there does not exist
a u ∈ Rm such that ẋ − f (x, u) = 0. We indeed naturally exclude
such points. It is easily proven that the integral curves of (1) and
(2) coincide on the set X0 given by

X0 = {x ∈ X | τ kXF (x) = 0,∀k ∈ N} \ {x ∈ X | π−1(x, ẋ) = ∅}.

Therefore, the system trajectories are uniquely defined by the
triple (X, τX, F ) that we call the system from now on (see [5]).
Without loss of generality, we may consider that this system is
restricted to X0.

In order to get rid of any reference to an explicit system, such
as the complementary of the empty fibers of the projection π , we
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