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algorithms over sensor networks with communication noises under general digraphs. Basic results of
stochastic analysis and algebraic graph theory are used to investigate the dynamics of the consensus error,
and the mean square and sample path convergence rates of the consensus error are both given in terms
of the graph and noise parameters. Especially, calculation methods to estimate the mean square limit
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the step sizes are given to achieve the fast convergence rate. For the sample path limit bounds, estimation
methods are also presented under undirected graphs.
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1. Introduction

Recently, consensus algorithms with stochastic disturbances in
sensor networks have been widely investigated, including mea-
surement noises, time delay, quantized data and random link fail-
ures [1-7]. For consensus problems with communication noises,
the stochastic approximation (SA) consensus algorithm with de-
creasing step sizes is an effective method to attenuate the influence
of noises. Applications of SA consensus algorithms and theoretical
development in consensus problems were reported in [8-12], etc.
Under fixed or time-varying topologies, the condition that the net-
work contains or jointly contains a spanning tree to guarantee con-
sensus is well understood. This problem has been systematically
investigated by the tools of the SA theory [12,13], the quadratic
Lyapunov functions [8,9], the algebraic theory [5], and the ergodic-
ity backward product approach [10,11]. Different from the SA-type
consensus algorithm with decreasing step size, Amelina et al. [ 14]
proposed the consensus algorithm with a nonvanishing stepsize
for nonlinear agent dynamics over noisy networks to achieve the
approximate mean square consensus.

It is worth noting that the convergence rate of the consensus al-
gorithm, which characterizes how fast consensus can be achieved,
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is an important issue from the perspective of practical applications.
For the case with precise communication, the consensus error van-
ishes exponentially with the rate governed by the second smallest
eigenvalue of the Laplacian matrix [15,16]. The problems how to
characterize and optimize the convergence rate are extensively
studied via the optimization of the weighted adjacency matrix [17],
local node state prediction [18], and filtering techniques [19].
Recently, Olshevsky and Tsitsiklis [20] investigated the conver-
gence time of consensus algorithm under time-varying undirected
graphs and proposed a linear time average-consensus protocol un-
der fixed undirected graphs [21]. For the SA consensus algorithm,
the convergence rate problem has also attracted much attention.
For the average-consensus problem under undirected graphs, Kar
and Moura [22] showed that the mathematical expectation of the
state vector sequence converges exponentially to the consensus
value, and Dasarathan et al. [ 12] derived the asymptotic covariance
matrix of the consensus error when the step size a(t) = @(t~1).
For the case with balanced digraphs, Li and Zhang [8] obtained the
sample path convergence rate of finite step mean consensus error.
For the leader-following topology case, Xu et al. [ 13] showed that
the sample path convergence rate of the consensus error is o(a’1(t))
if the step size a(t) satisfies lim;_, o (a(t) —a(t +1))/(a(t)a(t + 1)) >
0, and the mean square convergence rate of the consensus error
is o(a®2(t)) if a(t) = O(t™*) with @ € (0.5,1], 81,8, € (0, 1).
Wang et al. [23,24] investigated the convergence rate in the sense
of convergence in distribution for multi-scale consensus modeling
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with Markovian regime switching. Compared with the case with
precise communication, the convergence of SA algorithm is not
exponentially fast any more and is in more complex relation to
the step size a(t) and network parameters. This motivates us to
evaluate the impacts of the step size and network parameters on
the algorithm, which is useful for the designers to improve the
convergence rate.

In this paper, we consider the discrete-time SA consensus algo-
rithm under general digraphs corrupted by martingale difference
sequence communication noises. Different from [9-11] which fo-
cused on the consensus conditions of the SA consensus algorithm,
the main goal of this paper is focused on the convergence rate
analysis in relation to the step size and network graph parameters.
For a class of typical step sizes, we apply basic results of stochastic
analysis and algebraic graph theory to investigate the consensus
error dynamic equation. Compared with the continuous-time SA
consensus algorithm in [25], there is no It6 formula as the effective
tool and we develop more technical tools of inequality theory to
handle with the closed-form of the consensus error. Our contribu-
tion mainly includes the following three aspects.

e For the case of fixed topologies, we show that if the step size
a(t) = O(t77), y € (0.5,1), then the mean square con-
vergence rate of the consensus error is O(t~7); especially,
for the case with balanced digraphs, the convergence rate
is exactly @(t~7). Furthermore, both upper and lower limit
bounds of t”E(||8(t)||?) are explicitly given in terms of the
noise intensity, the number of nodes, the smallest and the
largest nonzero eigenvalues of the Laplacian matrix of the
symmetrized graph.

e Ifa(t) = O(t™"), intuitively, the mean square convergence
rate of the consensus error might be O(t~') and higher than
the case with a(t) = ©(t77), y € (0.5, 1). Interestingly,
we found that this is not always true, and the mean square
convergence rate is O(t ') only if the Laplacian eigenvalues
of the network topology graph satisfy certain conditions. It
is observed that the fast convergence rate O(t~!) depends
on the step size a(t) and eigenvalues of the Laplacian ma-
trix. Especially, for the case with balanced graphs, choosing
a(t) = Ot ") with Ay(Lg)liminf_ o(ta(t)) > 1 will
achieve the convergence rate O(t~'), where A,(Lg) is the
algebraic connectivity of the symmetrized graph. For the
case with undirected graphs, the condition on the step size
a(t) can be relaxed to A, (Lg)liminf;_, (ta(t)) > 1/2, where
Aa(Lg) is the algebraic connectivity of the graph.

e We study the sample path behavior of the consensus error
under undirected graphs. It is observed that the consensus
error has a convergence rate slightly slower than O(t~7/?)
almost surely. The upper limit bound of the sample path of
the consensus error is calculated.

Compared with the existing related works [12,8,13,22,26,24],
we systematically analyze the stochastic convergence rates of the
distributed SA consensus algorithm in the sense that both the
network topology and the class of step size are more general.
Besides, the explicit limit bounds of the stochastic convergence
rates are provided, which clearly show the impacts of various kinds
of system parameters on the convergence rates, i.e. the number of
nodes, the variance of noises, the maximal weight, the eigenvalues
of the Laplacian matrix, etc. Also, sufficient conditions are given to
achieve fast convergence rate O(t~!). These will be all helpful for
developing efficient and practical distributed algorithms over large
scale sensor networks by designing the step sizes and network
parameters.

This paper is organized as follows. In Section 2, we formulate
the problem to be investigated. In Section 3, we investigate the
dynamic consensus error equation and give the mean square and

sample path convergence rates for the SA consensus algorithm. Nu-
merical simulations to corroborate our analytical findings are pre-
sented in Section 4, and concluding remarks are given in Section 5.
For the sake of conciseness, all the proofs are put in Appendix.

In this paper, we adopt the following notations. 1y.; and
Oyx1 denote N x 1 column vectors with all ones and all ze-
ros, respectively. For a given vector or matrix A, AT denotes its
transpose, and ||A| denotes its 2-norm. For any given complex
number A, Re(A) denotes its real part and Im(A) denotes its imag-
inary part. We denote f(t) = o(g(t)) if lim;— » |f(t)/g(t)] = O;
f(t) = 0(g(t)) if limsup, ., If(£)/g(E)] < oo; f(t) = £2(g(t))
if liminf,_, o |f(t)/g(t)] > 0; and f(t) = ©(g(t)) if both f(t) =
O(g(t)) and f(t) = £2(g(t)). For a differentiable function f(t), f*(t)
denotes its kth derivative and fO(t) = f(t).

2. Problem formulation

For a weighted digraph G = {V, &, A}, V = {1, ..., N} denotes
the set of N nodes, £ denotes the set of edges, and A = [a;;] € RVN
denotes the weighted adjacency matrix. The pair (j, i) € £ < node
j can send information to node i directly. Then j is called the parent
of i. Node i is called a source if it has no parent. The neighborhood
of the ith node is denoted by N; = {j € V|(j, i) € £}. For any given
i,j €V,a; > 0,anda; > Oifandonly ifj € M. Lg = D—Ais called
the Laplacian matrix of G, where D = diag(Z]N:]aU, e Z;V:]aNj).

The digraph g is balanced, if Zf'zlaj,- = Z].N=1a,-j foralli € V. A
directed tree is a digraph, where every node except the root has
exactly one parent and the root is a source. A spanning tree of G is
a directed tree whose node set is VV and whose edge set is a subset
of £.If the digraph G contains a spanning tree, then Lg has a unique
zero eigenvalue and all other N — 1 eigenvalues have positive real
parts. We denote A; = 0 and all its distinct non-zero eigenvalues
by A3, ..., A We denote A = min{Re(Ap,),2 < m < I} 1Itis
known that there exists a unique probability measure 7" which
is the left eigenvector of Lg associated with A1, i.e., 7TLg = Oyy1.
If the digraph G is balanced, then 77 = (1/N)1y..

Consider the discrete-time SA consensus algorithm for a N
nodes network

x(t+1) =x(t) +a(t) Y ay(y(t) — xi(t)), t = 0,iev, (1)
JeN;

here the step size a(t) > 0; x;(t) € Ris the ith node’s state, and the

initial state x;(0) is deterministic; y;(t) is the received information

of the ith node from the jth node:

Yii(t) = x;(t) + wji(t), j € M, (2)

where {wji(t), t > 0,1, € V} are the communication noises.
Denote X(t) = [x1(t), ..., xn(t)]". Eq. (1) can be rewritten as
follows:

X(t + 1) = (Iy — a(t)Lg)X(t) + a(t) SgW(t). (3)

Here, W(t) = [wl(t), ..., wh(OIF, wi(t) = [wi(t), ..., on(t)]
and Xg = diag(e!, ..., ) isan N x N? dimensional block diag-
onal matrix with aiT being the ith row of the weighted adjacency
matrix A.

It was proved in [9] that if the digraph G contains a span-
ning tree and a(t) satisfies the standard conditions Zfioa(t) =
00, Zfioaz(t) < 00, then the SA consensus algorithm (1)-(2)
can achieve both mean square and almost sure consensus, i.e.,
E|xi(t)|*> < oo, and there exists a random variable x* such that
lime_, oo E|xi(t) — x*|> = 0 and lim;_, oox;(t) = x* a.s., for alli € V.
Hereinafter, to measure the disagreement among the nodes, we
denote ] = 1y, 7" and the dynamic consensus error by §(t) =
(In = 1)X(2).

In this paper, we will study the stochastic convergence rate of
8(t) and our main goal includes two aspects:
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