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a b s t r a c t

The stability of a prediction-based controller is studied in presence of time-varying delays both in the
input and in the output. Thanks to the reduction method and a Lyapunov–Krasovskii analysis, stability
conditions are derived. A comparison is also made between the single input delay and single output delay
cases. It is shown that this method can be applied to stabilize output delay systems without restriction on
the delay rate. The results are illustrated numerically on a double integrator.
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1. Introduction

Input delay and output delay systems are a subclass of time
delay systems (TDS). The reader can refer to survey papers [1,2] and
books [3,4] for a general review on TDS. Input and output delays
can arise because of data acquisition or because of latencies during
communications between the controller, the plant and the sensors.
The latter example is particularly common for remote controlled
devices such as UAVs, satellites or in Networked Control Systems
(NCS). Usually input and output delays are treated similarly be-
cause they have similar effects on the system.

There exist two different approaches to control such systems:
memoryless (or memory free) and memory controllers. The ad-
vantage of memory free controllers is that they do not require the
computation of an integral. The reader can refer to the following
articles: [5] for bounded control, [6] for adaptive control, [7] and [8]
for a truncated predictor, [9] for continuous pole placement, [10]
for Partial Spectrum Assignment (PSA) and [11] for sliding mode
techniques. The drawback of this approach is that they usually
cannot guarantee a good level of performance for unstable systems
with large delays. In this case,memory controllers can be designed.
For systems with a single delay (in the input or in the output), a
memory controller is often a controller based on the computation
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of a prediction. It has been highlighted in [12] that state prediction is
a fundamental concept for delay systems, much like state observation
is for systems with incomplete state measurements. The most well-
known method is the Smith predictor. This frequency approach
was introduced by Smith at the end of the 1950s in [13]. At the end
of the 1970s and the beginning of the 1980s, the result of Smith has
been extended to state–space representation and unstable systems
in [14] and [15]. In [16], this approach has been extended for input,
output and state delays. In [17], the standard prediction ismodified
to get more robustness against external disturbances. All these
methods are designed for constant delays.

When the delay is time-varying, it has been shown in [18] that it
is possible to perfectly compensate it but it requires the knowledge
of the delay in advance. This result has been extended to nonlinear
systems with both input and state delays in [19]. In practice, this
is generally not possible to know the delay value in advance that
is why alternative predictive techniques have been developed.
In [20], the sub predictor method developed in [21] has beenmod-
ified and extended to time-varying output and input delays. The
advantage of this method is that it is finite dimensional. However
it cannot deal with arbitrarily large input or output delays. In [22],
an approximate predictor (based on the constant delay predictor)
is computed for time-varying delays in the input. It is shown that
the stability is preserved if the delay rate is sufficiently small.

In this article, the method presented in [22] (for time-varying
input delay) is extended to LTI systems with time-varying delays
both in the input and the output. It is considered that the full state
is known but that themeasurement is delayed as well as the input.
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In the constant delay case, input and output delays have similar
effects on the stability of the systems. As a consequence, for the
time-varying delay case, it is expected that the stability conditions
that hold for the input delay casewill also hold for the output delay
case. However, it is shown that for a time-varying output delay, no
bound on the delay time-derivative is required.

The paper is organized as follows. The problem, the assump-
tions and the stability analysis when both input and output delays
affect the system are presented in Section 2. The special cases of a
single input delay and a single output delay are given in Section 3.
Simulations illustrate previous theoretical results in Section 4.
Finally, some perspectives are given in Section 5.

2. Main result

2.1. System presentation and assumptions

The systems considered in this work have the following form⎧⎨⎩
ẋ(t) = Ax(t) + Bu(t − hI (t))
y(t) = x(t − hO(t))
x(θ ) = φx(θ )forθ ∈ [−hmax, 0]

(1)

where x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×p, u(t) ∈ Rp and φx is
continuous.1 The delays hI (t) and hO(t) are known, time-varying
and verify the assumptions below.

Assumption 1. The delays hI (t) and hO(t) are bounded, i.e. there
exist hmin ≥ 0 and hmax > 0 such that

hmin ≤ hI (t) ≤ hmax (2)

and

hmin ≤ hO(t) ≤ hmax. (3)

Assumption 2. The delays hI (t) and hO(t) are differentiable and
their time derivatives are bounded, i.e. there exist δI > 0 and
δO > 0 such that

|ḣI (t)| ≤ δI (4)

and

|ḣO(t)| ≤ δO. (5)

In addition, it is assumed that the following assumption holds.

Assumption 3. The pair (A, B) is stabilizable, so there exists a ma-
trix K such that A+BK is Hurwitz and this ensures the existence of
a symmetric positive matrix P , solution of the Lyapunov equation

(A + BK )TP + P(A + BK ) = −cuIn (6)

with cu > 0 and In the identity matrix of order n.

The objective is to design a prediction-based controller inspired
by the constant delay case prediction and to study the influence
of the time-varying delay on the closed-loop stability. In the case
of a time-varying delay, it is very difficult to compute the exact
prediction since it would require to know future values of the
delay [18,19]. However, this case is not very common in practice.
Therefore, an approximate prediction z(t) is computed thanks to
the current value h(t) = hI (t) + hO(t) (h(t) ∈ [2hmin, 2hmax]) as

1 This guarantees that sups∈[−hmax,0]∥x(s)∥
2 is well defined.

follows

z(t) = eAh(t)x(t − hO(t)) +

∫ t

t−h(t)
eA(t−s)Bu(s)ds (7)

for all t ≥ 0.

Remark 2.1. On top of the initial condition on x(t) for t ∈

[−hmax, 0], an initial condition u(s) = φu(s) for s ∈ [−2hmax, 0]
is needed to compute z(t). Note that φu has to be bounded on
[−2hmax, 0] to ensure that sups∈[−2hmax,0]∥u(s)∥

2 is well defined.
In addition, it is also required that φu is differentiable and that
φ̇u(0) = K ż(0) in order to have u differentiable for all t ≥ −2hmax.

Note that z(t) is an approximate prediction so the delay is not
be perfectly compensated. This approximate prediction can then
be used to compute the controller

u(t) = Kz(t) (8)

for all t ≥ 0. The convergence analysis of the closed-loop system
(1)–(8) is given in the next section.

2.2. Convergence result

The condition for the stability of the closed-loop system (1)–(8)
is given in the following theorem.

Theorem 1. Consider system (1) which satisfies Assumptions 1, 2, 3.
Suppose that system (1) is controlled by (8) with z defined by (7) and
define

ΥIO(t) = sup
s∈[t−hmax,t]

∥x(s)∥2
+ sup

s∈[t−2hmax,t]
∥u(s)∥2

+ sup
s∈[t−2hmax,t]

∥u̇(s)∥2.
(9)

Then, there exist ςIO, ϱIO, δ
∗

I > 0 such that, provided

δI < δ∗

I , (10)

one has

ΥIO(t) ≤ ςIOΥIO(0)e−ϱIOt , ∀t ≥ 0 (11)

and therefore limt→+∞∥x(t)∥ = 0.

Proof. By differentiating (7) thanks to Leibniz’s rule and using (1),
it can be verified that the prediction z(t) is solution of the following
equation

ż(t) = Az(t) + Bu(t) + ḣIAz(t) + ḣIeAhBu(t − h(t))

− ḣIA
∫ t

t−h(t)
eA(t−s)Bu(s)ds

+ (1 − ḣO)eAhB
∫ φ(t)

t−h(t)
u̇(s)ds

(12)

for all t ≥ 0 andwhereφ(t) = t−hO(t)−hI (t−hO(t)). The following
Lyapunov–Krasovskii functional candidate is chosen

V (t) = V1(t) + V2(t) + V3(t) (13)

where

V1(t) = zT (t)Pz(t), (14)

V2(t) =

∫ t

t−2hmax

(2hmax + s − t)∥u(s)∥2ds, (15)

V3(t) =

∫ t

t−2hmax

(2hmax + s − t)∥u̇(s)∥2ds. (16)

Note that P is defined in (6). The term V1 is similar to the one used
in the delay free case. The terms V2 and V3 are required to deal
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