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a b s t r a c t

Local variable selection by first order expansion for nonlinear nonparametric systems is investigated in
the paper. By substantially modifying the algorithms developed in our earlier work (Bai et al., 2014), the
previous results have been considerably strengthened under much less restrictive conditions. Firstly,
the estimates generated by the modified algorithms are shown to have both the set and parameter
convergence with probability one, rather than only the set convergence in probability given in our
earlier work. Secondly, several technical assumptions, e.g., the lower and upper bounds on the growth
of some random sequences, which practically are uncheckable, have been removed. Thirdly, not only the
consistency but also the convergence rate of estimates have been established. Besides, a generalization of
the proposed algorithms is also introduced.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following nonlinear autoregressive system with
exogenous inputs (NARX):

yk+1 = f (yk, . . . , yk+1−p, uk, . . . , uk+1−q) + εk+1, (1)

where uk and yk are the system input and output, respectively, εk
is the system noise, p and q are the upper bounds of system orders,
and f (·) is an unknown nonparametric nonlinear function. By non-
parametrization it means that no a prior information is assumed
on the model structure such as f (·) = f (·, θ ) with θ being the
unknown parameters. In this case, the value of f (·) is estimated
point by point. This is therefore often referred to as Model on
Demand [1–3]. In this paper, we consider variable selection by the
first order expansion of the NARX system (1) under nonparametric
setting.
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Variable selection plays an important role in many areas in-
cluding systems and control [4–8], signal processing [9–11], statis-
tics [12,13], and machine learning [14–16], etc., since it provides a
way to discover relevant predictive variables and to ensure more
reliable predictions. A problem closely related to variable selection
is the order estimation, which has been extensively studied for
linear systems, for example, the well-known Akaike’s Information
Criterion (AIC) and its variants [17,18]. Compared with order es-
timation, variable selection in fact goes further: with the orders
p and q being determined, one seeks the contributing variables
among yk, . . . , yk+1−p and uk, . . . , uk+1−q. Variable selection has
been investigated in the literature, for example, MDS [19], LASSO
and its variants [12,13], and more recently the compressive sens-
ing techniques [9]. Other methods include the correlation coef-
ficient method [16], mutual information method [20], Bayesian
method [6], and kernel-based method [21] in which the systems
are supposed to be linear and often a priori probability distribution
of the collected data is required. In [5,7,8], variable selection of
nonlinear systems is investigated, where the nonlinearity in the
system is represented as a linear-in-parameter form, i.e. yk+1 =

F (ϕk)T θ + εk+1, with θ being the unknown parameter, ϕk the
regression vector and F (·) the known basis functions. The problem
is by no means trivial, but with such a system formulation, ideas
from variable selection of linear systems can be adopted. Variable
selection problems have also been studied in themachine learning
area, c.f., [14,15]. In [14] the collected data are assumed to be iid
and some a prior knowledge on the sample probability distribution
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is required. It is clear that for the NARX system (1), the input–
output data are not iid and the nonlinear function f (·) cannot
always be formulated in a linear-in-parameter form. Besides, in
the above papers, the system contributing variables are in a global
sense, that is, they are effective over the whole operating domain.
This is true for linear systems or nonlinear systems formulated
in linear-in-parameter forms. But for nonlinear systems, we need
to investigate the problem from a different angle. Consider the
following example [4]:

yk+1 = f (uk, uk−1, uk−2, uk−3) + εk+1, (2)

f (uk,· · ·,uk−3)=

⎧⎪⎨⎪⎩
uk−3, if uk ≥ 0
uk−3uk−1, if uk <0, uk−1 >1
uk−3uk−2, if uk <0, uk−1 <−1
uk, otherwise.

(3)

From (3) it is clear that there is no domain where all variables
collectively contribute to generating a value of f (·), e.g., variable
uk−3 is the only contributing variable in domain uk ≥ 0. This is
quite different from linear systems and for nonlinear systems it is
therefore meaningful to select locally the contributing variables.

The first problem is how to define which variables are con-
tributing for the system (1). An intuitive but effective approach
is to take the first order expansion. Let ϕ∗ ≜ [y(1), . . . ,
y(p), u(1), . . . , u(q)]T be the given point. Assume f (·) is differen-

tiable at ϕ∗ and set ▽f (ϕ∗) ≜
[

∂ f
∂y(1) · · ·

∂ f
∂y(p)

∂ f
∂u(1) · · ·

∂ f
∂u(q)

]T
. It

is clear that f (ϕ) ≈ f (ϕ∗) + ▽f (ϕ∗)T (ϕ − ϕ∗) for all ϕ close
to ϕ∗. Thus, the importance of yk, . . . , yk+1−p, uk, . . . , uk+1−q in
the neighbourhood of ϕ∗ can be captured by the magnitudes of
|∂ f /∂y(i)| , i = 1, . . . , p and |∂ f /∂u(j)| , j = 1, . . . , q. If yk−i or uk−j
does not contribute locally, then ∂ f /∂y(i) = 0 or ∂ f /∂u(j) = 0.
In fact, the idea of the first order expansion is not new and has
been used in order detection/variable selection/local embedding of
nonlinear systems. See, e.g. [4,10,11], etc. In [10], the idea of first
order expansion is introduced, which leads to successive studies
on the modelling and identification of nonlinear systems [16,20].
However, in [10,16,20], only algorithms are given, while the the-
oretical properties are not addressed. In [11], the system under
consideration is static. How to extend the idea to dynamic systems
remains open. In [4], with the similar idea as in [10] for the variable
selection of nonlinear systems, a kernel-based Lasso-type penal-
ized convex optimization algorithm is proposed to locally estimate
the contributing variables at fixed points. It is shown that this kind
of algorithms has the set convergence in probability, i.e., the Lasso-
type algorithms correctly identifying which variables contribute
locally and which do not. In comparison to our previous work,
the main contributions of this paper are summarized as follows.
Firstly, we show that with probability one the estimates generated
by a modified version of the algorithms in [4] not only have the
set convergence but also the parameter convergence. Secondly,
several restrictive assumptions imposed in [4], for example, the
boundedness assumption on the conditional number of the data
matrix, have been removed. Thirdly, in addition to convergence,
the convergence rate of estimates is also given in the paper.

The rest of the paper is organized as follows. The Lasso-type
penalized convex optimization algorithm for variable selection of
the NARX system (1) is formulated in Section 2, and the main
results of the paper are presented in Section 3. A generalization
of the algorithm is introduced in Section 4. A simulation study is
given in Section 5. Finally, some concluding remarks are addressed
in Section 6.

Notations. Let (Ω, F ,P) be the basic probability space and ω

be an element in Ω . Denote the 2-norm of a matrix M by ∥M∥,
and its (i, j)-element by M(i, j). The ith element of a vector m is
denoted by m(i). Denote by ∥ν(·)∥var the total variation norm of a
signedmeasure ν(·). The invariant probabilitymeasure and density

of a Markov chain are denoted by PIV(·) and fIV(·), respectively,
if they exist. Denote by ▽f (·) the gradient of a function f (·). By
sgn(x) we denote the sign function, i.e., sgn(x) = 1 if x ≥ 0 and
sgn(x) = −1 if x < 0.

2. Kernel-based nonparametric variable selection algorithm

Define ϕk ≜ [yk, . . . , yk+1−p, uk, . . . , uk+1−q]
T .

Definition 1 ([4,10,22]). Assume f (·) is differentiable at a given
ϕ∗

= [y(1), . . . , y(p), u(1), . . . , u(q)]T . If some of partial differen-
tials ∂ f /∂y(i), i = 1, . . . , p or ∂ f /∂u(j), j = 1, . . . , q are nonzero
at ϕ∗, then yk−i or uk−j in the neighbourhood of ϕ∗ are defined as
the contributing variables.

Based on the above definition, the key steps towards variable
selection for the NARX system (1) are to find a local linear model
of f (·) at ϕ∗ and then to determine which coefficients in the
local linear model are zero. We now introduce the algorithms as
follows. Based on the measurements {uk, yk+1}

N
k=1, the local linear

estimator (LLE) θN+1 is given by

J1,N+1(θ )≜
N∑

k=1

wk(ϕ∗)
(
yk+1−θ0−θ T

1 (ϕk−ϕ∗)
)2

(4)

θN+1 =

[
θ0,N+1 θ T

1,N+1

]T
≜ argmin

θ0∈R,θ1∈Rp+q
J1,N+1(θ ), (5)

with the kernel function

wk(ϕ∗) =
1

bp+q
k

w

(
ϕk − ϕ∗

bk

)
, (6)

where bk =
1
kδ for some δ ∈ (0, 1) and w(·) is a probability density

function (pdf).

Remark 1. Awidely usedw(·) in the kernel is the Gaussian pdf. The
estimates derived from (5)–(6) correspond to a local linear model
for f (·) at ϕ∗: θ0,N+1 and θ1,N+1 given by LLE serve as the estimates
for f (ϕ∗) and ▽f (ϕ∗), respectively.

Define

Xk ≜
[
1 (ϕk − ϕ∗)T

]T
. (7)

The estimates based on (4)–(6) can be expressed as

θN+1=

(
N∑

k=1

wk(ϕ∗)XkXT
k

)−1( N∑
k=1

wk(ϕ∗)Xkyk+1

)
(8)

given that
∑N

k=1wk(ϕ∗)XkXT
k is nonsingular. Further, define

θ1,N+1 ≜ [θ1,N+1(1), . . . , θ1,N+1(p + q)]T . Then, the penalized
convex optimization algorithm for variable selection is given as

J2,N+1(β) ≜
N∑

k=1

wk(ϕ∗)(yk+1 − θ0,N+1 − βT (ϕk − ϕ∗))2

+ γN

p+q∑
j=1

1⏐⏐θ1,N+1(j)
⏐⏐ |βj|, (9)

βN+1 =[βN+1(1),· · · ,βN+1(p + q)]T ≜argmin
β∈Rp+q

J2,N+1(β), (10)

where the kernel wk(ϕ∗) is introduced in (6), {γN}N≥1 is a positive
sequence tending to infinity, and

θ1,N+1(j) ≜ θ1,N+1(j) +
1
Nε

sgn(θ1,N+1(j)) (11)

for j = 1, . . . , p + q and ε ∈ (0, δ).
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