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a b s t r a c t

Parameter estimation-based observers are a new kind of state reconstruction methods where the state
observation task is translated into an on-line parameter estimation problem. A key step for its application
is the transformation of the system dynamics into a particular cascade form, which involves the solution
of a partial differential equation that, moreover, should satisfy some injective requirement. In this note
we use a recently proposed technique of signal injection to generate new outputs and simplify these
tasks. In this way, we make this observer applicable to a wider class of nonlinear systems—even with
indistinguishable states. The application of the proposed approach is illustratedwith the design of a novel
sensorless controller for magnetic levitation systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the last three decades we have witnessed rapid progress of
nonlinear observer theory in the control literature. Recent reviews
may be found in [1–3]. The first systematic observer theory for
nonlinear systems was developed in [4]. In this seminal work, a
nonlinear state transformation to obtain a linear system up to an
output injection was proposed. The approach has some extremely
restrictive conditions, stymying its applicability for most physical
systems. Since then various approaches to design observers for
nonlinear systems have been pursued, e.g., based on nonlinearity
domination via high-gain [5,6], on the generation of invariant
manifolds [1,7], on passivity and dissipativity theory [8] and on
optimization theory [9]. Particular attention has been given to the
Kazantzis–Kravaris–Luenberger (KKL) observer [10], which is the
extension of Luenberger’s cornerstone work [11] for linear time-
invariant (LTI) systems to the nonlinear case. For autonomous sys-
tems, KKL observers have been systematically studied from both
theoretical and numerical aspects [12,13]. However, the existence
of KKL observer and its design procedure for nonlinear systems
with inputs are, to the best of our knowledge, still open problems.

In [14] a novel class of observers for nonlinear control systems,
called parameter estimation-based observers (PEBOs), was pro-
posed. The distinguishing feature of PEBOs is that it formulates the
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observer design problem as a parameter estimation problem. A key
step for the application of PEBO is the transformation of the system
dynamics into a particular cascaded form, a task that requires
the solution of a partial differential equation (PDE). Moreover,
this solution should define an injective map and an associated
(consistent) parameter identification task has to be solved. In this
note we propose to use the signal injection technique introduced
in [15] to generate new ‘‘virtual outputs’’ that, included in the PEBO
design, provide additional degrees of freedom to satisfy the three
aforementioned requirements. The inclusion of probing signals for
observer and controller design is standard practice in many practi-
cal applications like sensorless control of electrical machines [16],
vibration control [17] and active islanding detection schemes [18].
It is also routinely used in parameter identification and adaptive
control to achieve the persistency of excitation condition required
for parameter convergence and control robustification [19].

To apply the signal injection technique in the PEBO scenario it
is necessary to extend the results of [15] in three directions.

(i) Extend the theory for scalar systems to the case multi-
input–multi-output (MIMO) systems.

(ii) Refine the averaging analysis considering the use in the
control of the estimated virtual output instead of the virtual
output itself.

(iii) Redesign the estimator of an alternative virtual output in-
stead of the one obtained for the nominal system.

Another contribution of the paper is to propose a technique to solve
the PDE using mappings pseudo inverses and Poincare’s lemma.
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This new procedure, which translates the problem of solution of
the PDE into the solvability of a set of (nonlinear) algebraic equa-
tions and an, easily verifiable, integrability condition – both steps
some free mappings – is more systematic and provides additional
degrees of freedom to solve the problem.

The remaining of paper is organized as follows. In Section 2,
a brief review of PEBO is given. The main idea and a motivating
example are presented in Section 3. Sections 4 and 5 describe the
use of signal injection in PEBO, while in Section 6 we discuss the
new technique to solve the PDE. Examples that illustrate the main
results of the paper are given in Section 7. Section 8 contains the
conclusion and future work. To enhance readability the technically
involved proofs are given in appendices.

Notations. O = col(0, . . . , 0). 1 = col(1, . . . , 1). A† denotes the
generalized inverse of the matrix A. All the functions are supposed
smooth enough. Given a function f : Rn

→ R we define ∂if :=
∂ f
∂xi

and the differential operator ∇f :=
(

∂ f
∂x

)⊤
. For a mapping F :

Rn
→ Rm we define the ijth element of its n × m (transposed)

Jacobian matrix as (∇F )ij :=
∂Fj
∂xi

. O is the ‘‘uniform big O’’ symbol,
that is, f (z, ε) = O(ε) if and only if |f (z, ε)| ≤ Cε for a constant C
independent of z and ε.

2. Parameter estimation-based observers

To apply the signal injection technique it is necessary to develop
a slight variation of the main result of [14], where the full state –
instead of part of it as done in [14] – is observed. For the sake of
completeness we give also the proof of this result.

Proposition 1. Consider the nonlinear system

ẋ = f (x) + g(x)u
y = h(x)

(1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm and g(x) is full rank, together with the
following assumptions.
(A1) (PDE solvability) There exist mappings

φ : Rn
→ Rnz , β : Rp

× Rm
→ Rnz ,

with nz ≥ n − p satisfying the PDE

∇
⊤φ(x)

[
f (x) + g(x)u

]
= β

(
h(x), u

)
(2)

(A2) (Left invertibility) There exists a mapping φL
: Rnz ×Rp

→ Rn

such that

φL(φ(x), h(x)) = x. (3)

(A3) (Consistent identification) There exist mappings

M : Rnζ × Rnz × Rp
× Rm

→ Rnζ ,

N : Rnζ × Rnz × Rp
× Rm

→ Rnz ,

with nζ ∈ N+ such that the parameter estimator

ζ̇ = M(ζ , z, y, u) (4)

ϑ̂ = N(ζ , z, y, u) (5)

generates a consistent estimate for the nonlinear regressionmodel

ż = β(y, u) (6)

y = h(φL(z + ϑ, y)), (7)

where ϑ ∈ Rnz is a vector of constant, unknown parameters. That
is, all signals are bounded and

lim
t→∞

|ϑ̂(t) − ϑ | = 0.

Under these assumptions, the PEBO

x̂ = φL(z + ϑ̂, y)

verifies limt→∞|x̂(t) − x(t)| = 0.

Proof. Defining the function z = φ(x), it follows from (2) that

ż = β(h(x), u). (8)

This, together with (6) and an integration, implies that

z(t) − z(t) = ϑ, ∀t ≥ 0, (9)

where ϑ := z(0) − z(0) is the integration constant. Now, Assump-
tion (A2) ensures that

x = φL(z, y) = φL(z + ϑ, y),

wherewehaveused (9) to obtain the second identity. Replacing the
expression above in the output map yields (7). The proof is com-
pleted invoking Assumption (A3) and defining the state estimate x̂
by replacing ϑ̂ in the place of ϑ in the equation above. □□□

3. Main idea and motivating example

Clearly, the design of the PEBO is simplified if additional signals
are available for measurement. The main contribution of the paper
is to propose a procedure – based on the signal injection technique
of [15] – to generate an approximation of the signal yv = hv(x) ∈

Rp, where we defined

hv(x) := ∇
⊤h(x)g(x)b (10)

with b ∈ Rm a free vector utilized in the scaling of the signal
injections.

To motivate the addition of this virtual output signal in the
context of PEBO we present in this section its application for a
benchmark example. Namely, a magnetic levitation system con-
sisting of an iron ball of mass m in a vertical magnetic field as
shown in Fig. 1. Assuming the flux, denoted x1, and the current y
are related by

x1 =
k

1 − x2
y

where k is a positive constant, x2 ∈ (−∞, 1) is the distance
between the centre of the ball and its nominal position and taking
as state vector x = col(x1, x2,mẋ2), the dynamics of the system is
described by (1) with

f (x) =

⎛⎜⎜⎜⎝
−

r
k
(1 − x2)x1
x3
m

1
2k

x21 − mg0

⎞⎟⎟⎟⎠ , g =

(1
0
0

)
, h(x) =

1
k
(1 − x2)x1, (11)

where u is the voltage, r is the inductors resistance and g0 denotes
the acceleration due to gravity—see [20] for additional details of
the model.

It is clear that the observation of the state from the measure-
ment of y seems a daunting task. Our objective is to design a PEBO
assuming measurable the additional signal

yv := hv(x) = ∇
⊤h(x)g =

1
k
(1 − x2). (12)

The first step is to solve the immersion PDE, which in this case
becomes

∇
⊤φ(x)[f (x) + gu] = β

(
h(x), hv(x), u

)
.
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