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a b s t r a c t

This paper is concerned with the stability analysis of a distributed parameter circuit with dynamic
boundary condition. The distributed parameter circuit is written by the telegrapher’s equations whose
boundary condition is described by an ordinary differential equation. First of all, it is shown that,
for any physical parameters of the circuit, the system operator generates an exponentially stable
C0-semigroup on a Hilbert space. However, it is not clear whether the decay rate of the semigroup is
the most precise one. In this paper, the spectral analysis is conducted for the system satisfying the
distortionless condition, and it is shown that the semigroup satisfies the spectrum determined growth
condition.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, for the buck converter with constant inductive load, a
distributed parameter model was proposed by C. Huang et al. [1].
In that paper, a dynamic boundary condition was considered at
one boundary, and the state–space representation was given in an
infinite-dimensional space. However, itwas not shownonwhether
or not the system operator generates a strongly continuous semi-
group (C0-semigroup, for short) and further the exponential sta-
bility. On the other hand, for a semilinear damped wave equation
which contains the telegrapher’s equation as a special case, the sta-
bilization problemunder boundary feedback has been investigated
by Gugat [2], where it is shown that sufficiently small velocity
damping brings large decay rates.

In this paper, we consider the distributed parameter circuit
with dynamic boundary condition and discuss the stability of
the system in the framework of infinite-dimensional space. Es-
pecially, we use the frequency domain approach. First of all, we
show that the system operator generates an exponentially stable
C0-semigroup on a Hilbert space. Next, the spectral analysis for
the system operator is conducted for the case satisfying the distor-
tionless condition, and it is shown that the C0-semigroup satisfies
the spectrum determined growth condition by using F.L. Huang’s
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result [3]. Here, we note that the similar method was applied
by Xu et al. [4] and Kunimatsu and Sano [5] to the proof of
exponential stability of the counter-flow heat exchanger equation
with zero boundary conditions and the stability analysis of the
counter-flow heat exchanger equation with boundary feedbacks,
respectively.

The result by F.L. Huang on the spectrum determined growth
condition is summarized as follows:

Theorem 1.1 ([3, Theorem 1 and Theorem 4]). Let etA be a
C0-semigroup with the infinitesimal generator A in a Hilbert space H
and set

ω0(A) := lim
t→∞

log ∥etA∥L(H)

t
, σ0(A) := sup{Re(λ); λ ∈ σ (A)},

where σ (A) denotes the spectrum of A. Then, the spectrumdetermined
growth condition σ0(A) = ω0(A) is satisfied if and only if

sup{∥(λI − A)−1
∥L(H); Re(λ) ≥ σ } < ∞

holds for each σ > σ0(A). Furthermore, the computational formula
relating to ω0(A) is the following:

ω0(A) = inf{σ ; σ > σ0(A) and sup{∥(λI − A)−1
∥L(H);

Re(λ) ≥ σ } < ∞}.
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2. Generation of semigroup

We shall consider the following distributed parameter circuit
with dynamic boundary condition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L′
∂ i
∂t

(t, z) = −
∂u
∂z

(t, z) − R′i(t, z), t > 0, z ∈ [0, l],

C ′
∂u
∂t

(t, z) = −
∂ i
∂z

(t, z) − G′u(t, z), t > 0, z ∈ [0, l],

u(t, 0) = 0, i(t, l) = y(t), t > 0,
i(0, z) = i0(z), u(0, z) = u0(z), z ∈ [0, l],

ẏ(t) = −
1
LI
(Ry(t) − u(t, l)), t > 0, y(0) = y0,

(1)

where i(t, z), u(t, z) ∈ R are the current and voltage at the time t
and at the point z ∈ [0, l], respectively. LI , L′ are the inductances, C ′

the capacitance,R,R′ the resistances,G′ the conductance. As iswell-
known, the partial differential equations are called the telegrapher’s
equations. In [1], the boundary condition u(t, 0) = Ued(t) was used
instead of u(t, 0) = 0, where d(t) ∈ {0, 1} was the switch position.
In this paper, we discuss the stability of the same system under
zero boundary condition, i.e., d(t) ≡ 0.

The system (1) is written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[ i(t, z)
u(t, z)
y(t)

]
=

⎡⎢⎢⎢⎢⎢⎣
−

R′

L′
−

1
L′

∂

∂z
0

−
1
C ′

∂

∂z
−

G′

C ′
0

0 0 −
R
LI

⎤⎥⎥⎥⎥⎥⎦
[ i(t, z)
u(t, z)
y(t)

]

+

⎡⎢⎣ 0
0

1
LI
u(t, l)

⎤⎥⎦ , [ i(0, z)
u(0, z)
y(0)

]
=

[ i0(z)
u0(z)
y0

]
,

u(t, 0) = 0, i(t, l) = y(t).

(2)

Let us formulate the system (2) in aHilbert spaceX := [L2(0, l)]2×C
with inner product defined by ⟨f , g⟩X := ⟨f1, g1⟩ + ⟨f2, g2⟩ + βf3g3
for f = [f1, f2, f3]T ∈ X , g = [g1, g2, g3]T ∈ X , where β :=

LI
L′C ′ (>

0) and ⟨ϕ,ψ⟩ :=
∫ l
0 ϕ(z)ψ(z)dz forϕ,ψ ∈ L2(0, l). Define the linear

operator A : D(A) ⊂ X → X as

Af =

⎡⎢⎢⎢⎢⎢⎣
−

R′

L′
−

1
L′

d
dz

0

−
1
C ′

d
dz

−
G′

C ′
0

0 0 −
R
LI

⎤⎥⎥⎥⎥⎥⎦
[f1
f2
f3

]
+

⎡⎢⎣ 0
0

1
LI
f2(l)

⎤⎥⎦ ,
D(A) = {f = [f1, f2, f3]T ∈ [H1(0, l)]2 × C;

f2(0) = 0, f1(l) = f3}. (3)

Then, the system (2) can be written as

d
dt

[ i(t, ·)
u(t, ·)
y(t)

]
= A

[ i(t, ·)
u(t, ·)
y(t)

]
,

[ i(0, ·)
u(0, ·)
y(0)

]
=

[ i0
u0
y0

]
, (4)

where we assume that i0, u0 ∈ L2(0, l) and y0 ∈ R. Here, if the
operator A generates a C0-semigroup etA on X , then a solution of
(4) is expressed as [i(t, ·), u(t, ·), y(t)]T = etA[i0, u0, y0]T .

Remark 2.1. The boundary condition at z = l of the system (1)
can be also expressed by the form of Dirichlet integral feedback:
i(t, l) = y0 −

1
LI

∫ t
0 (Ri(τ , l) − u(τ , l))dτ . The stabilization problem

of the wave equation under Dirichlet integral feedback has been
studied by Gugat [6].

First of all, we prove that the operator A generates an exponen-
tially stable C0-semigroup.

Theorem 2.1. The operator A defined by (3) generates an exponen-
tially stable C0-semigroup etA on X.

Proof. First, we define the operator T ∈ L(X) as T :=

[
0

√

C ′ 0
√

L′ 0 0
0 0 1

]
.

Then, the operator T−1AT is expressed as

T−1ATf =

⎡⎢⎢⎢⎢⎢⎣
−

G′

C ′
−

1
√
L′C ′

d
dz

0

−
1

√
L′C ′

d
dz

−
R′

L′
0

0 0 −
R
LI

⎤⎥⎥⎥⎥⎥⎦
[f1
f2
f3

]

+

⎡⎢⎣
0
0

√
L′

LI
f1(l)

⎤⎥⎦ ,
D(T−1AT ) = {f = [f1, f2, f3]T ∈ [H1(0, l)]2 × C;

f1(0) = 0, f2(l) =
1

√
C ′

f3}.

Here, note that thematrix on the right-hand side of T−1ATf is sym-
metric. Then, since it follows that Re⟨T−1ATf , f ⟩X = −

G′

C ′ ∥f1∥2
−

R′

L′ ∥f2∥
2
− β R

LI
|f3|2 for all f = [f1, f2, f3]T ∈ D(T−1AT ), we see that

Re⟨T−1ATf , f ⟩X ≤ −γ ∥f ∥2
X , ∀f ∈ D(T−1AT ), (5)

where γ := min{
R′

L′ ,
G′

C ′ ,
R
LI

} (> 0). Also, as shown in Appendix,
there exists a number λ > 0 such that the range of λI − T−1AT is
equal to X , i.e.,

R(λI − T−1AT ) = X . (6)

Since it is easily verified that T−1AT is a densely defined
closed linear operator, it follows from the fact together with (5)
and (6) that the operator T−1AT + γ I generates a contractive
C0-semigroup et(T

−1AT+γ I) on X , i.e., the operator T−1AT gener-
ates an exponentially stable C0-semigroup et(T

−1AT ) with norm
bound ∥et(T

−1AT )
∥L(X) ≤ e−γ t on X , by using the Lumer–Phillips’

Theorem [7, Theorem 1.4.3] (see also the proof of [8, Corollary
2.2.3]). That is, the operator A generates an exponentially stable
C0-semigroup etA with the same decay rate on X . □

Remark 2.2. By using the inner product with β = 1 instead
of β =

LI
L′C ′ , we can also show that the operator A generates a

C0-semigroup on X by applying the perturbation result of semi-
groups [9, Corollary III.1.5], but, in such a way, we cannot conclude
the exponential stability of the C0-semigroup.

3. Stability analysis

In this section, we show that, under some assumption with
respect to the physical parameters of the circuit, one can give the
most precise decay rate for theC0-semigroup etA shown in Theorem
2.1, by analyzing the spectrum of A as well as using F.L. Huang’s
result (Theorem 1.1).

Assumption 3.1. The condition R′C ′
= L′G′ is satisfied. Hereafter,

set ω :=
G′

C ′ =
R′

L′ (> 0).
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