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a b s t r a c t

This paper presents a newmethod to synthesize safe reversible Markov chains via extending the classical
Metropolis–Hastings (M–H) algorithm. The classical M–H algorithm does not impose safety upper bound
constraints on the probability vector, discrete probability density function, that evolveswith the resulting
Markov chain. This paper presents a new M–H algorithm for Markov chain synthesis that ensures such
safety constraints together with reversibility and convergence to a desired stationary (steady-state)
distribution. Specifically, we provide a convex synthesis method that incorporates the safety constraints
via designing the proposal matrix for the M–H algorithm. It is shown that the M–H algorithm with this
proposal matrix, safe M–H algorithm, ensures safety for a well-characterized convex set of stationary
probability distributions, i.e., it is robustly safe with respect to this set of stationary distributions. The
size of the safe set is then incorporated in the design problem to further enhance the robustness of
the synthesized M–H proposal matrix. Numerical simulations are provided to demonstrate that multi-
agent systems, swarms, can utilize the safe M–H algorithm to control the swarm density distribution.
The controlled swarm density tracks time-varying desired distributions, while satisfying the safety
constraints. Numerical simulations suggest that there is insignificant trade-off between the speed of
convergence and the robustness.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Metropolis–Hastings (M–H) algorithm [1–4] is a method
for obtaining random samples from a probability distribution. The
M–H algorithm builds on the theory of Markov processes and
Markov-Chain-Monte-Carlo (MCMC) sampling methods [5–8] to
synthesize reversible Markov chains that guarantee the desired
stationary distributions. Recent research has focused on synthe-
sizing fast mixing Markov chains with desired stationary distribu-
tions that incorporate constraints on transition probabilities [9,10]
by using tools from graph theory [11], Lyapunov stability analy-
sis [12], and convex optimization [13].

The M–H algorithm is very useful when online Markov chain
synthesis is needed because it can be implemented easily and ex-
ecuted very efficiently. Given a matrix K (called proposal matrix),
the M–H algorithm can be used to construct a stochastic transition

✩ A preliminary version of this paper was presented at the ACC 2016 (El Chamie
andAçıkmeşe, [1]). This paper extends the results andpresentation in El Chamie and
Açıkmeşe [1] by providing detailed proofs, more generalized results, and applying
the theory to randomized motion planning in multi-agent systems.
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matrix M of a Markov chain to satisfy some specifications, e.g., a
prescribed stationary distribution and constraints on transitions.
The matrix M inherits the key properties of the proposal matrix
K , such as speed of convergence, while satisfying the prescribed
specifications. Thus the choice of matrix K is critical for the per-
formance of the M–H algorithm [14], in order to speed up the
warm up phase, i.e., the transient regime. However, currently, the
M–H algorithm cannot impose hard constraints on the probability
distribution vector during thewarmupphase, such as upper bound
constraints on the probability distribution. These hard constraints
on the probability vector of the Markov chain are often referred to
as safety constraints [15,16].

Safety constraints are critical in applications where the vio-
lations during transients can cause a failure of the system. The
primary focus of this paper is on swarm control [17–19], where
overcrowded regions can increase the risk of collisions in space.
Having safe transients is also critical for systems where an exoge-
nous process can push the system out of the stationary regime.
Some examples of exogenous processes in swarm control are:
addition or removal of agents in and out of the swarm and disaster
incidents that cause a group of agents in a region to fail. These
incidents push the system out of the stationary regime into a new
transient regime, so a safe convergence back to the stationary
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distribution is necessary and can be provided by the safe M–H
algorithm proposed in this paper.

In [16,17], we synthesize Markov matrices with safety con-
straints via convex optimization methods. The approach in [16,17]
requires solving an LMI optimization for the construction of these
matrices and it is suited for constant offline synthesis of Markov
matrices. On the other hand, in this paper, we obtain a compu-
tationally efficient M–H algorithm to synthesize a time-varying
Markov matrix. This allows the system to quickly adapt to time-
varying desired distribution specifications without recomputing
the proposal matrix, which is a very useful property for the swarm
control application where this adaptation must happen in real-
time. In addition, we present a robust version, which handles a
larger set of stationary distributions, and a fast version, which
optimizes the rate of convergence of the Markov chain.

In summary, the main contributions of this paper are: (i) In-
corporating safety into the M–H algorithm for a set of stationary
probability distributions; (ii) Providing anew linear-programming-
based method to synthesize the proposal matrix of the safe
M–H algorithm with some robustness properties; (iii) Studying
the speed of convergence of the resulting transition matrix of the
robust and safe M–H algorithm; (iv) Applying the robust and safe
M–H algorithm to a swarm density control problem, with time-
varying desired density specifications.

2. Problem formulation

The probability distribution over the states of a Markov chain
can be expressed as a probability vector x(t) ∈ Rm with the relation

x(t + 1) = M(t)x(t) t = 0, 1, 2, . . . (1)

whereM(t) is a column stochasticmatrix for all time, i.e., 1TM(t) =
1T and M(t) ≥ 0, with ≥ being the component-wise inequality.
In many applications, it is desired to design the column stochastic
matrix M(t) to satisfy some specifications. For example, in swarm
control, also referred to as Randomized Motion Planning (RMP)
[17,20], x(t) describes the probability of an agent (e.g., vehicle) to
be in a given region and M(t) determines the probability distribu-
tions for possible transitions between these regions. In later sec-
tions, we will apply our theoretical findings on the RMP problem.
In gossiping and wireless sensor networks [21], Eq. (1) describes
the dynamics for the evolution of an estimate of a relevant physi-
cal quantity as temperature, pressure, etc. In voting models [22],
x(t) determines the preference of a group of people towards a
given object of interest (e.g., application, leader, etc.). In consensus
protocols, the transition matrix (also called the weight matrix) is
designed for the fastest convergence of the consensus among a
group of networked agents [23,24].

The probability vector x(t) characterizes the behavior of the
underlying Markov chain, governed by Eq. (1), both during the
transient (warm-up) and steady-state phases. During thewarm-up
phase, the M–H algorithm samples from x(t), which is biased by
the initial distribution x(0),1 where x(t) satisfies some constraints
naturally due to the column stochasticity ofM(t), such as x(t) ≥ 0
and 1Tx(t) = 1 for all t = 0, 1, . . .. There can also be additional
constraints characterized by hard safety upper bounds on the prob-
ability vector, i.e.,

x(t) ≤ d for all t ≥ 0, (2)

where d ∈ Rm
+

is a constant non-negative vector. The classical
M–H algorithm does not impose the above safety constraints (2)
on the probability vector of the resulting Markov chain. This paper

1 The M–H algorithm eventually samples from the limiting distribution
limt→∞x(t) = v that is independent of x(0).

presents a newM–H algorithm forMarkov chain synthesismethod
that handles safety constraints while ensuring other specifications
such as reversibility, desired stationary (steady-state) distribution,
and transitional constraints. The synthesis of the proposed M–H
algorithm is based on a numerically tractable linear programming
formulation.

3. Formulation of reversible Markov chain synthesis with
safety constraints

3.1. Notation

In this paper, small bold letters are used for vectors (e.g., x
whose elements are indicated as x1, x2, . . .), and capital letters are
used for matrices (e.g., X whose ith row jth column element is
denoted by Xij). A graph is denoted by G = (V, E) where V =
{1, . . . ,m} is the set of vertices and E ⊆ V×V is the set of edges. We
use the pair (j, i) to denote the edge from vertex j to vertex i. We
assume that (i, i) ∈ E for all i ∈ V, i.e., G contains all the self loops.
The adjacency matrix A of G = (V, E) is: Aij = 1 if (j, i) ∈ E and
Aij = 0 otherwise. A summary of the notation is given by Table 1.
We will consider the following assumption on the graph G:

Assumption 1. G is undirected and connected.

In an undirected graph, (j, i) ∈ E if and only if (i, j) ∈ E . A graph
is connected if for any pair of vertices i and j, there is a path from i
to j, i.e., a sequence of edges (i, i1), (i1, i2), . . . , (ip, j) starting from
vertex i and ending at vertex j. With Assumption 1, the adjacency
matrix A is symmetric and irreducible.

3.2. Markov chain specifications

We consider a Markov chain describing the evolution of a dis-
crete probability vector x(t) ∈ Pm given by (1), where M(t) is a
column stochasticmatrix for all time t . Motivated byMarkov chain
terminology, M(t) is referred to as the transition matrix where
Mij(t) is the probability of transition from a state j to state i at
time t .

We first consider the case with a constant transition matrix
M(t) = M for all t , and then discuss the time-varying case
after introducing theM–H algorithm for the time-invariant desired
distributions. Specifically, our objective is to synthesize a transition
matrix M such that the resulting Markov chain (1) has the follow-
ing properties:

1. The desired probability distribution v ∈ Pm is the stationary
distribution: limt→∞x(t) = v, ∀ x(0) ∈ Pm.

2. Reversibility: viMji = vjMij, for all i, j = 1, . . . ,m.
3. Transition constraints: Mij = 0 when (i, j) ̸∈ E , and Mij > 0

when (i, j) ∈ E (the set of feasible transitions).
4. Safety constraints: x(t) ≤ d for all t ≥ 0, and for a given

vector 0 ≤ d ≤ 1.

The transition constraints are described by an adjacency matrix
characterizing the set of feasible state transitions. The safety con-
straints bound the probability distribution during both the tran-
sients and at the steady-state.

3.3. Convex formulations of the specifications

This section summarizes our results on convex formulations
of the above specifications for a time-invariant Markov matrix
M . These convex representations are equivalent to the original
specifications and they facilitate the formulation of Linear Matrix
Inequality (LMI) problems for the synthesis of reversible Markov
chains for given steady-state distributions.



Download English Version:

https://daneshyari.com/en/article/7151626

Download Persian Version:

https://daneshyari.com/article/7151626

Daneshyari.com

https://daneshyari.com/en/article/7151626
https://daneshyari.com/article/7151626
https://daneshyari.com

