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a b s t r a c t

This paper investigates the global adaptive state feedback controller design for a class of feedforward
nonlinear systems with completely unknown control direction and unknown growth rate. Since the
control direction, i.e., the sign of the control coefficient, is unknown, the control problem becomes
much more challenging, to which a Nussbaum-type function is exploited. Moreover, the systems heavily
depend on the unmeasured states with unknown growth rate, and hence a dynamic gain, rather than a
constant one, is adopted to compensate the large system unknowns. For control design, a suitable state
transformation is first introduced for the original system. Then, the state feedback controller is proposed
based on an appropriate Nussbaum-type function and a dynamic high gain. It is shown that the state of the
original system converges to zero, while the other states of the closed-loop system are globally bounded.
Finally, a simulation example is provided to illustrate the effectiveness of the theoretical results.
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1. Introduction

Since the pioneering work of Teel [1], many important results
have been obtained for feedforward nonlinear systems, see e.g.,
[2–12] and references therein. Most of these works on global
stabilization are for feedforward nonlinear systems with exactly
known control coefficients. However,when the control coefficients
are uncertain or unknown, the problem becomes muchmore chal-
lenging and difficult, and few results are proposed [13–16]. In [13],
the problem of input disturbance suppression was studied for a
class of feedforward nonlinear systems. In [14], global stabilization
problemwas investigated for feedforward systemswith nonlinear-
ities allowed to be lower-order growing. The systems considered
in [13,14] have uncertain control coefficients with known lower
and upper bounds. In [15], the considered feedforward systems
have unknown control coefficient with known sign. Recently, [16]
investigated state feedback controller design for feedforward non-
linear systems with unknown control direction. Later on, [17]
studied the problem of adaptive state feedback stabilization a class
of feedforward nonlinear systems, whose control coefficient is
unknown but with known sign.
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In this paper, we generalize the systems studied in our earlier
work to a more general ones:⎧⎨⎩ ζ̇i = fi(ζ , x), i = 1, . . . ,m,

ẋi = xi+1 + φi(ζ , x, u), i = 1, . . . , n − 1,
ẋn = gu + φn(ζ , x, u),

(1)

where ζ = [ζ T1 , . . . , ζ
T
m]

T
∈ Rn1+···+nm = Rnζ , 1 ≤ m ≤ n − 1,

and x = [x1, . . . , xn]T ∈ Rn, n ≥ 3, are the system states with
the initial states ζ (0) = ζ0, and x(0) = x0; u ∈ R is the control
input. The control coefficient g is an unknown nonzero constant.
The sign of g , i.e., the control direction, is also unknown. Functions
fi : Rnζ × Rn

→ Rni , i = 1, . . . ,m, and φi : Rnζ × Rn
× R → R,

i = 1, . . . , n, are locally Lipschitz continuous. Suppose system (1)
satisfies the following assumptions:

Assumption 1. The subsystems ζi, i = 1, . . . ,m are Input-to-State
Stable (ISS) with ISS Lyapunov functions Ui(ζi) satisfying

U i∥ζi∥
2

≤ Ui(ζi) ≤ U i∥ζi∥
2, ∀ζi ∈ Rni ,

U̇i ≤ −αi∥ζi∥
2
+ c0

n∑
j=i+2

x2j , i = 1, . . . ,m,

where U i, U i, αi, i = 1, . . . ,m are known positive constants, and c0
is an unknown positive constant.
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Assumption 2. There exists an unknown constant c > 0 such
that

|φi(ζ , x, u)| ≤ c
( m∑

j=1

∥ζj∥ +

n∑
j=i+2

|xj|
)
, i = 1, . . . , n.

By Assumption 1, the zero-dynamics of the considered systems
are input-to-state stable, and it is similar to those in [17,18].
Assumption 2 shows that system (1) is in a feedforward form,
similar ormore general assumptions are given in [6,19,20]. Besides,
the considered system has unmeasured states dependent growth
with unknown constant growth rate c. Therefore, the problem
of global stabilization is investigated for feedforward nonlinear
systems with unknown growth rate. For nonlinear systems with
unknown growth rate, some results of global stabilization have
been obtained, see e.g., [19,21]. However, the systems considered
in [19,21] have exactly known control coefficient and do not con-
tain zero-dynamics. As we know from the description of system
(1), the control coefficient g is completely unknown, including its
sign. Therefore, we have to dealwith the difficulties caused by both
the unknown growth rate and the control coefficient. On the one
hand, since the control direction is unknown, it is hard to decide
the direction along which the control operates [22]. On the other
hand, the existence of unknown g makes the control design of the
feedforward system (1) more difficult and challenging [14,17]. As
a result, it is difficult to relax the restrictions on system nonlinear-
ities.

Comparing with local stabilization of nonlinear systems,
the result of global stabilization is more delicate. The initial
state is not restricted to belong to some subset of the state
space [7,10,14,17,23–25]. In this paper, we consider the global
state feedback stabilization problem for system (1) with unknown
control direction. This paper generalizes the systems studied
in [16] to those with unknown growth rate c , and [17] to those
with unknown control direction sign(g). Accordingly, the method
of construct a dynamic high gain and a Nussbaum-type function
is flexibly adopted to deal with the difficulties caused by c and
sign(g). First, a state transformation is introduced to obtain a new
system, such that it ismore convenient to design the state feedback
controller. Then, the state feedback controller is proposed with an
appropriate Nussbaum-type function and a dynamic high gain. By
suitable choice of the design parameter and the Lyapunov func-
tion, the state of the closed-loop system is proved to be globally
bounded and the original state of system (1) converges to zero.

Notations. Throughout this paper, I denotes the identitymatrix
with appropriate dimension; R denotes the set of all real numbers,
Rn denotes the real n-dimensional space. For a vector or matrix X ,
XT denotes its transpose, and ∥X∥ (i.e., ∥X∥2) and ∥X∥1 denote the
Euclidean norm (or 2-norm), and the 1-norm for vectors, and the
corresponding induced norms for matrices, respectively.

2. Adaptive state feedback controller

Considering system (1), it is not easy to propose a controller
directly. Hence, similar to [17], we first introduce the following
state transformation for the subsystem x of system (1):

zi =
1

rn−i+1 xi, i = 1, . . . , n, (2)

where r is a dynamic gain and satisfies

ṙ =
1
r2

n∑
i=1

z2i , r(0) = 1. (3)

In the maximal interval of existence for the solution of system (3),
r is monotonically nondecreasing and hence r(t) ≥ 1 for t ≥ 0.

Remark 1. The formof the dynamics of r is the same as that in [17].
It is simple and effective. By introducing the dynamic high gain r ,
the negative effect caused by the unknown c in Assumption 2 can
be successfully handled, as will be seen later.

After state transformation, the following equations are obtained⎧⎪⎨⎪⎩
żi =

1
r
zi+1 +

1
rn−i+1 φi −

(n − i + 1)ṙ
r

zi, i = 1, . . . , n − 1,

żn =
1
r
gu +

1
r
φn −

ṙ
r
zn.

(4)

For system (4), we propose the controller in the form of

u = N(k)(a1z1 + · · · + anzn) = N(k)aTz, (5)

k̇ =
2
r
zTPenaTz, (6)

where z = [z1, . . . , zn]T, a = [a1, . . . , an]T with constants ai,
i = 1, . . . , n to be determined later, and N(·) is a smooth function
with Nussbaum property:

lim
s→∞

sup
1
s

∫ s

0
N(k)dk = +∞,

lim
s→∞

inf
1
s

∫ s

0
N(k)dk = −∞.

When the sign of the control coefficient is unknown, it becomes
much more difficult to solve the control problem, because we
cannot decide the direction along which the control operates [22].
Nussbaum function is successfully developed to dealwith this situ-
ation. In light of [22,26–30], the difficulty caused by the unknown
control direction can be overcome using the Nussbaum function.
In fact, the Nussbaum-type function is not restricted to be even or
odd [22]. However, in this paper, we restrict the Nussbaum-type
function to be even for convenience, such as N(k) = ek

2
cos( π2 k),

N(k) = k2 cos( π2 k), and so on. Then, the following lemma is given:

Lemma 1 ([26]). Let V (·) and k(·) be smooth functions defined on
[0, tf )with V (t) ≥ 0, ∀t ∈ [0, tf ), N(·) be an even smooth Nussbaum-
type function, and g be a nonzero constant. If the following inequality
holds:

V (t) ≤

∫ t

0
(N(k(τ ))g + 1)k̇(τ )dτ + c ′, ∀t ∈ [0, tf ), (7)

where c ′ represents some suitable constant, then V (t), k(t) and∫ t
0 (N(k(τ ))g + 1)k̇(τ )dτ must be bounded on [0, tf ).

Substituting (5) into (4), system (1) is converted into⎧⎨⎩ζ̇i = fi, i = 1, . . . ,m,

ż =
1
r
Az + ψ +

1
r
(N(k)g + 1)enaTz −

ṙ
r
Dz,

(8)

where ψ = [ψ1, . . . , ψn]
T with ψi =

1
rn−i+1 φi, en = [0, . . . ,

0, 1]T ∈ Rn, D = diag[n, . . . , 1], and

A =

⎡⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

⎤⎥⎥⎥⎥⎦ .
The constants ai, i = 1, . . . , n are chosen to make matrix A

Hurwitz, and such that there exists a symmetric matrix P > 0
satisfying

ATP + PA ≤ −I, DP + PD ≥ 0. (9)

The choice can always be carried out according to [23,31,32].
Up to now, the main result of the paper is summarized as

follows:
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