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a b s t r a c t

This paper deals with the stability analysis of a system of finite dimension coupled to a vectorial transport
equation. We develop here a new method to study the stability of such a system, coupling ordinary and
partial differential equations, using linearmatrix inequalities led by the choice of an appropriate Lyapunov
functional. To this end, we exploit Legendre polynomials and their properties, and use a Bessel inequality
to measure the contribution of our approximation. The exponential stability of a wide class of delay
systems is a direct consequence of this study, but above all, we are detailing here a new approach in the
consideration of systems coupling infinite and finite dimensional dynamics. The coupling with a vectorial
transport equation is a first step that already prove the interest of the method, bringing hierarchized
conditions for stability. We will give exponential stability results and their proofs. Our approach will
finally be tested on several academic examples.
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1. Introduction

Systems coupling partial and ordinary differential equations are
one type of infinite dimensional systems. The robust control of
what is also called distributed parameter systems has been a very
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active field for the last decades and has spawned several branches,
such as e.g. in stability analysis and stabilization design. This article
is meant to perform a stability analysis of a system of linear ordi-
nary differential equations (ODE) coupled to a vectorial transport
equation, which is a first order hyperbolic partial differential equa-
tion (PDE). Analysing and controlling this type of system coupling
ODE and PDE is an attractive topic at the interface of appliedmath-
ematics and automatic control. A large number of papers already
exist on stability of this class of systems: see e.g. [1–5] amongmany
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others. For instance, such systems appear in the context of energy
management as in [6]. The coupled system we will study in this
article has the specificity to represent an alternative formulation
of a time-delay system (TDS) with a vectorial transport equation
replacing the delay terms. One should know that TDS also have a
solution that evolves in an infinite dimensional space and in our
opinion, this is an interesting connection that suggests to benefit
of the different approaches for the stability and control in both
domains (TDS and PDE). On the one hand, we can refer to several
stability and control studies of PDE such as in the books [7–9],
and the references therein, or the non-exhaustive list of articles
[10–12] and [13]. On the other hand, TDS have been widely inves-
tigated in the literature (see e.g. [14–18], and [19]), and used in
many areas, as in biological systems, mechanical transmissions or
networked control systems.

One of the most fruitful fields of research in stability of these
TDS relies on the exhibition of Lyapunov–Krasovskii functionals
(LKF). In reference [16], the candidate Lyapunov functional called
complete LKF, leads even to a necessary and sufficient stability
condition. Nevertheless, the parameters composing this complete
LKF make it numerically difficult to handle, especially for high
dimensional systems [20,21]. A lot of investigations then turns to
approximating these parameters, and more recently, approxima-
tion methods have been improved by considering polynomial like
parameters of arbitrary degree [22].

Our goal in this article is to provide a novel framework to
address stability problem of linear coupled finite/infinite dimen-
sional systems following recent advances on time-delay systems
presented for instance in [18]. Our work here is a first step towards
more general PDE and focusses on the transport equation case,
giving rise to a necessary stability criteria of stability when such
a PDE is coupled to an ODE. The analysis adopted in the present
paper is based on the Lyapunov theorem for infinite dimensional
systems, which, according to us, represents a first relevant chal-
lenge. As a consequence of this more general analysis, we will
provide a unified set of linear matrix inequalities (LMI) conditions
allowed to guarantee exponential stability (in the sense of the
L2-norm) applicable to a wide class of delay systems including
single/multiple/cross-talking delays for differential and difference
equations, as particular case but is not only resume to these
classes of systems. The objective of this paper is to provide a new
framework for the analysis of this linear coupled ODE/hyperbolic
PDE system. This contribution extends our preliminary studies
presented in [23] and [24], where only a single transport speed
was considered. The main difficulty is related to the infinite di-
mensional state of the system, which prevents from extending
directly the existing methods of the finite dimension analysis.
Nevertheless, in order to provide efficient and tractable stability
conditions, we employ a polynomial approximation of the state
expressed using Legendre polynomials, following the approach
developed for TDS in [18].

Notations: N is the set of positive integer, Rn is the n-
dimensional Euclidean spacewith vector norm |·|n. In is the identity

matrix in Rn×n, 0n,m the null matrix ∈ Rn×m,

[
A B
⋆ C

]
replaces

the symmetric matrix
[
A B
B⊤ C

]
. We denote Sn

⊂ Rn×n (resp.

Sn
+

= {P ∈ Sn, P ≻ 0}, and Dn
+
) the set of symmetric (resp.

symmetric positive definite and diagonal positive definite) matri-
ces and diag(A, B) is a bloc diagonal matrix. For any square matrix
A, we define He(A) = A + A⊤. Finally, L2(0, 1;Rm) represents the
space of square integrable functions over the interval [0, 1] ⊂ R
with values in Rm and the partial derivative in time and space are
denoted ∂t and ∂x, while the classical derivative are Ẋ =

d
dt X and

L′
=

d
dxL.

2. Formulation of the problem

2.1. Linear coupled ODE–PDE system

This article is devoted to the stability analysis of a system of
ODEs coupled with a vectorial transport equation that takes the
following shape:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ẋ(t) = AX(t) + Bz(1, t), t > 0,
∂tz(x, t) +Λ∂xz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = C1X(t) + C2z(1, t), t > 0,
z(x, 0) = z0(x), x ∈ (0, 1)
X(0) = X0.

(1)

The state of this coupled system is composed of X(t) ∈ Rn and
z(·, t) ∈ L2(0, 1;Rm). A, B, C1 and C2 are constant matrices with
appropriate dimensions. The matrix of propagation speedΛ ∈ Dm

+

is given by:

Λ = diag(ρiImi ){i=1...p}. (2)

Thus, each velocity ρi > 0 is applied to mi components of the
state z(x, t) such that m =

∑p
i=1mi. Note that the situation of

negative transport speed ρi < 0, for some i ≤ p can be recast
in the same formulation with positive transport speed using a
change of state spatial variable x′

= 1 − x. The transport equation
∂tz + Λ∂xz = 0 in (1) of unknown z = z(x, t) is a simple linear
vectorial PDE and if the initial data z0 ∈ L2(0, 1;Rm) and the lateral
boundary data z(0, ·) = u ∈ L2(R+;Rm) are given, it has a unique
solution z ∈ C(R+; L2(0, 1;Rm)) such that (see e.g. [9]), for all
t > 0:

∥z(t)∥L2(0,1;Rm) ≤ K (∥z0∥L2(0,1;Rm) + ∥u∥L2(R+;Rm)).

Considering now the finite dimensional system in X(t) coupled
to the transport equation in the variable z(x, t), we can notice that
the coupling is linear and the existence of solution can be proved
thanks to Theorem A.6 in [7]. Following this theorem, for every
z0 ∈ L2(0, 1;Rm) and X0

∈ Rn, the Cauchy problem (1) has a
unique solution. Moreover, there exist K > 0 and δ > 0 such that
the solution (z(x, t), X(t)) of system (1) satisfies :

∥X(t)∥ + ∥z(t)∥L2(0,1;Rm) ≤ Keδt .

This well-posedness result suggests the choice of the following
total energy of the system E(X(t), z(t)) = |X(t)|2n + ∥z(t)∥2

L2(0,1;Rm),
and in the sequel, we will denote E(t) = E(X(t), z(t)) in order to
simplify the notations.

2.2. Lyapunov stability

We are looking for a candidate Lyapunov functional for (1) of
the shape:

V (X(t), z(t)) =

∫ 1

0

∫ 1

0

[
X(t)

z(x1, t)

]⊤ [ P Q(x1)
Q⊤(x2) T (x1, x2)

]
×

[
X(t)

z(x2, t)

]
dx1dx2

+

∫ 1

0
z⊤(x, t)e−2δxΛ−1

(S + (1 − x)R)z(x, t)dx, (3)

where the scalar δ > 0, the matrices P ∈ Sn
+
, S, R ∈ Sm

+
and

the functions Q ∈ L2(0, 1;Rn×m) and T ∈ L∞((0, 1)2; Sm) have
to be determined. As for the energy, in the sequel, we will denote
VN (t) = VN (X(t), z(t)) in order to simplify the notations.

Remark 1. Since the transport speed matrix belongs to Dm
+
, it

is invertible and admits an inverse matrix Λ−1 given by Λ−1
=

diag(ρ−1
i Imi ){i=1...p}. We can define its exponential matrix eΛ

−1
=
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