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a b s t r a c t

In this paper a passive integrator dedicated to input/output Hamiltonian systems approximation is
presented. In a first step, a discrete Hamiltonian framework endowedwith a Lie derivative-like formula is
introduced. It is shown that the discrete dynamics encodes energy conservation and passivity. Addition-
ally, the characterization of the discrete dynamics in terms of Dirac structure is shown to be invariant by
interconnection. The class is thus composable: networked systemsbelong to the class. In a second step, the
discrete dynamics is considered as a one-step integrationmethod. Themethod is shown to be convergent
and provides a discrete-time approximation of an input/output Hamiltonian system. Accordingly, the
discrete dynamics inherits intrinsic energetic characteristics (storage function and dissipation rate) from
the original system. The method is thus tagged as passive integrator. As an illustration, the closed-loop
behavior of interconnected subsystems and the stabilization of a rigid body spinning around its center of
mass are presented.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that Lagrangian and Hamiltonian dynamics
deserve dedicated time integration methods driven by the
preservation of invariants. Mostly, one is concerned either with
structure-preserving or with Hamiltonian-preserving algorithms.
Accordingly, approximation schemes fall into one of the two cate-
gories: geometric or energetic integrators.

Such integrators have been raised by numerical simulation
issues such as long time simulation, stability and efficiency of
integration methods regarding system’s invariants. There, the au-
thors develop and refine energetic [1–5], geometric [6–8] ormulti-
symplectic [9,10] integrators. Among the extensive literature
available with many points of view, only few references are given
here. Standard textbooks are [11–13]. Notice this active area of
research focuses on unforced Hamiltonian systems, i.e. without
input/output.

From an automatic control viewpoint, systems are endowed
with input/output variables that allow to describe interactions
with the surrounding environment. These interactions thus need
to be soundly encoded by the time-stepping algorithm. Restricted
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to this field, the literature is much less extensive. Note the above
mentioned integrators are not able to handle input/output vari-
ables. This paper precisely addresses this problem regarding pas-
sive Hamiltonian systems.

As closed-loop stability is concerned with passivity, stabilizing
control law synthesis relies on a passivity equation. However,
general discrete-time stabilization results [14,15] are derived from
given discrete-time dynamics assumed to be passive. The approx-
imation procedure is not considered. Restricted to input/output
Hamiltonian systems, the discrete-time approximation methods
proposed in the literature only achieve a truncated energy bal-
ance equation (e.g. discrete-time model and control [16,17],
sampled-data [18,19]).

An alternative to a direct discretization of the differential
equations resides on the discrete translation of the geometry of
modeling tools. The resulting discrete geometry framework has
shown relevant insights [20–24]. Again, only unforced systems
were considered. Relative to input/output Hamiltonian systems, a
similar idea has been used to deal with the Dirac description of
the equations [25–28]. Although additional structural properties
were captured, the time discretization step has not been treated
to obtain a class of discrete systems with intrinsic properties of
passive Hamiltonian systems. Consequently, missing passivity and
composability loses modeling and control technics within port-
Hamiltonian framework.

To overcome this drawback, we propose a discrete Hamiltonian
framework defined by a class of discrete systems shown to be
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passive and composable. It turns out that this discrete frame-
work is naturally endowed with a Lie derivative-like formula. The
discrete dynamics is obtained by a translation of balance equa-
tions thanks to discrete gradient introduced in [2]. Known as an
energetic integrator dedicated to unforced systems, the discrete
gradient is here used to define a passive integrator to cope with
input/output Hamiltonian systems. The resulting discretization
scheme is shown to be a convergent one-step method which pro-
vides a discrete-time dynamicswith inherited energetic character-
istics (storage function and dissipation rate).

The paper is organized as follows. Section 2 motivates a proper
properties encoding in terms of closed-loop convergence rate and
networked systems modeling. Our contributions are presented in
Sections 3 and 4. The discrete Hamiltonian framework is defined
in Section 3. The passivity equation and the Dirac structure char-
acterization are given. The passive integrator is studied in Section
4 where its convergence is analyzed. Section 5 is concerned with
numerical simulations.

2. Motivations

This paper is concerned with the discrete-time approximation
problem of the following class of passive systems (stemming from
port-Hamiltonian systems [29] satisfying integrability conditions).

Definition 1 ([30]). Given H a C1 real-valued function on Rm

assumed to be bounded from below, a passive Hamiltonian system,
denoted by ΣH , is defined by the following equations:

ΣH :

[
ẋ

−y

]
=

[
[J − R](x) g(x)
−gT (x) 0

][
∇H(x)

u

]
, (1)

where J = −JT : Rm
→ Rm×m is called the structure matrix,

R = RT
: Rm

→ Rm×m with R ≥ 0 is the dissipation matrix, g :

Rm
→ Rm×l the input matrix and (u, y) the passive inputs/outputs.

Passive Hamiltonian systems are associated with an energy-based
approach of physical systems where a system is considered as a
network of interconnected subsystems. Each subsystem describes
the energy exchanges relative to elementary phenomena interact-
ing with its surrounding (the network nodes and bonds). Interac-
tions in a whole are described as a set of constraints given by the
interconnection structure (the network topology).

Systems (1) are known to define a class of dynamical systems
with the following inherent properties:

(P1) Every element in the class verifies a passive equation with
an explicit dissipation rate.

(P2) The class is invariant by interconnection.

We shall seek to clone these properties at a discrete level. Let
us first recall their fundamental interest from an energy-based
viewpoint.

Regarding property (P1), the derivative of H along the trajecto-
ries of (1) gives a passivity equation with storage function H:
d
dt

H(x) = yTu − ∥∇H(x)∥2
R ≤ yTu , (2)

for all input function u, where ∥ · ∥R stands for the (semi-)norm
associated with the (semi-)positive definite matrix R. The term
∥∇H(x)∥2

R thus reads as the dissipation rate of the system. Observe
the passivity equation (2) also encodes losslessness when R ≡ 0,
and further, energy conservation in the unforced case (R ≡ 0 and
u ≡ 0 imply d

dtH = 0).
Since the dissipation rate is related to the convergence rate

when applying passivity-based control design technics, if the
amount of dissipated energy is numerically badly captured, a nu-
merical energy drift occurs and the resulting closed-loop behavior

is incorrectly estimated. Consequently, spurious simulation results
such as limit cycle and unstable trajectory can be obtained as
illustrated in [31].

Regarding property (P2), it can be shown that a network of
passive Hamiltonian systems

{
ΣHi

}
i constructed by constraining

the pairs {(ui, yi)}i through a (constant) Dirac structure, is a (gen-
eralized) Dirac structure having (1) as coordinate representation
(see [32]). We shall use the terminology composable to refer this
invariance property of the class.

From a discrete viewpoint, mimicking composability would
mean that both the discretized network of interconnected subsys-
tems and the network of discretized subsystems produce identical
dynamics. On the contrary, the discrete dynamics depends on
the partitioning of the network system. One may therefore vainly
wonder about the relevance of the choice of the partition regarding
the discrete dynamics obtained. An illustration is given for the
negative feedback interconnection of linear Hamiltonian systems
in [33].

In the sequel, a class of discrete Hamiltonian systems that
verifies properties (P1) and (P2) is introduced. Next, it is shown
that these systems are a discrete-time approximation of passive
Hamiltonian systems (1). So we claim that the process as a whole
depicts a relevant discrete framework for the class considered.

3. Discrete Hamiltonian framework

In this section, it is defined a class of discrete Hamiltonian
systems which is shown to satisfy properties (P1) and (P2).

The underlying idea is to translate the energy exchanges de-
scribed in (1) by replacing the gradient ∇ by the discrete gradient
∇ defined in what follows.

Definition 2 ([2]). Let f = (f1, . . . , fn) be a C1-map from Rm to Rn.
The difference quotient of f , denoted by ∇f , is a matrix-valued map
from Rm

× Rm to Rn×m defined by

∇ jfi(x, x′) =
1

x′

j − xj

[
fi(x′

1, . . . , x
′

j−1, x′

j , xj+1, . . . , xm)

− fi(x′

1, . . . , x
′

j−1, xj , xj+1, . . . , xm)
] (3)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Note ∇f (x, x′) is well-defined as ∥x′
− x∥ → 0 since f is C1.

Moreover, the following identity is satisfied:

∇f (x, x′)(x′
− x) = f (x′) − f (x) , (4)

for all x, x′ in Rm expressed as column vectors.
Let us now introduce discrete notations. Set X : N → Rm

the discrete state column vector. That is, for all k in N, X(k)
is the m-dimensional state vector at stage k given by X(k) =[
X1(k) · · · Xm(k)

]T . A discrete trajectory is then given by a ma-
trix XN

∈ (Rm)N where N is the number of iterates. Denote by
X ′

: N → Rm the map k ↦→ X ′(k) = X(k + 1). Given a real ∆t > 0,
one defines the state rate variation as ∇X =

X ′
−X

∆t .
Further, givenH a C1 real-valued function onRm, one defines its

discrete gradient along XN as ∇H(X, X ′). Its column vector expres-
sion is denoted by ∇

T
H .

We introduce the following class of discrete systems.

Definition 3. With the above notations, a discrete passive Hamilto-
nian system, denoted by ΣH , is defined by the equations

ΣH :

[
∇X
−y

]
=

[
[J − R](X) g(X)
−gT (X) 0

][
∇

T
H(X, X ′)
u

]
(5)

with J = −JT : Rm
→ Rm×m, R = RT

: Rm
→ Rm×m satisfies R ≥ 0

and g : Rm
→ Rm×l.
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