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a b s t r a c t

In this paper we examine the imaginary axis eigenvalues of matrix delay differential equations with
coefficients alternating between Hermitian and skew Hermitian, such as occurring in many mechanical
systems. We show that given this special structure and a certain sign condition, the dimension of the
eigenvalue problem is greatly reduced. We also give some theorems on eigenvalue crossing directions in
this context, and show how reduction of dimension and crossing theorems work to provide insight on
mechanical systems with time delay.
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1. Introduction

In this paperwewill be interested in determining the imaginary
axis eigenvalues of delay differential equations with a certain
algebraic structure. Our particular topic will be matrix high order
differential equations with a single delay and with coefficients
alternating between Hermitian and skew Hermitian. The reason
for this choice of coefficient structure will become apparent from
fundamental observations involving the generalized eigenvalues
of a matrix pair having one matrix Hermitian and the other sign
semi-definite.Wewill see thatwith this structure the dimension of
the pure imaginary eigenvalue problem is oftenmarkedly reduced,
and it will be possible to examine certain related questions with
insight rather than computation alone.

The choice of single delay will keep us from too much engage-
ment in subtleties relating exponential variables to the various
properties of linear functional differential equations. In this first
presentation on the subject, familiarity has been a consideration
in selecting examples. We will use matrix delay equations which
are second order in the derivative and have well-known interpre-
tations in mathematical sciences.

The idea that the oscillation frequencies of linear autonomous
time-delay equations are a key to their stability properties is
well-established, and there are several known approaches to de-
termining these frequencies inmatrix single delay equations [1–5].
Noting its fundamental nature, the topic continues to appear in
publications, for example in bifurcation numerics [6], in integral
delay and distributed delay equations [7,8], or in considering the
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part played by operator averaging in delay systems with rapid
periodic time-dependence [9], and generally in the modern the-
ory of delay differential equations [10]. Practical interest in the
topic is evident in books on time-delay control systems [11,12].
Investigations making use of special structure are less frequent,
unless we count practical modeling studies among these, e.g. those
occurring in vibration suppression [13]. Althoughwehope that this
contribution is used as a starting point for mathematical scientists
with both theoretical and applied interests, we will, as noted,
emphasize familiar matrix delay equations when giving examples.

In the next section we define our items of interest and give the
fundamental lemmas that make transparent the subsequent theo-
remsondimensionality and the question of oscillation eigenvalues.
These are given in Section 3,wherewe see that certainmatrix delay
equations with our kind of alternating coefficient structure have
only unity or the opposite for associated exponentials. The next
section looks at the direction of eigenvalue crossing, an important
topic for examples. Section 5 is given over to examples and some
discussion. Conclusions are given in Section 6.

2. Matrix delay equations and matrix polynomials

Here we give the basic definitions and observations from linear
algebra which pave the way for the theorems of the next section.
We define what we mean by a matrix polynomial with alter-
nating coefficient structure, and give some routine facts relating
such matrix polynomials to the type of matrix delay differential
equation we investigate with them. We briefly examine the gen-
eralized eigenvalue relations holding between semi-definite or
sign definite matrices and Hermitian matrices, supplementing the
well-known fact that the product of a sign definite matrix and a
Hermitian matrix has real eigenvalues.
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Before we proceed, it will be useful to have the notation C−,
iR, C+ for the standard partitioning of the complex plane. Also, we
shall use λmax (·) and λmin (·), respectively, to designate the maxi-
mum and minimum eigenvalues of a Hermitian matrix. Finally, dt
will denote the timedifferentiation operator, and ds will denote the
differentiation operator with respect to the complex variable s.

Consider matrix delay differential equations of the form
p∑

k=0

Jkx(k) (t) =

r∑
k=0

Ekx(k) (t − h) (1)

where each Jk, Ek ∈ Cn×n, p ≥ 1, r ≥ 0 and Jp ̸= 0, Er ̸= 0.
In practice readers will usually be interested in cases where Jk,
Ek ∈ Rn×n, and our examples will emphasize this. For complex s, z,
we will find it convenient to write

J(s) =

p∑
k=0

Jksk, E(s) =

r∑
k=0

Eksk (2)

T (s, z) = J(s) − zE(s). (3)

Note that with this notation, (1) can be written as J(dt )x(t) =

E(dt )x(t − h).
If x(t) = estv is a solution of (1), v ∈ Cn

− {0}, we refer
to x(t) as a spectral solution. We then have T (s, e−hs)v = 0. We
say that s is an eigenvalue of (1), and that T (s, e−hs), detT (s, e−hs)
are the characteristic matrix function and scalar characteristic
function of (1), respectively. We will be interested in determining
those eigenvalues s of (1) which lie on the imaginary axis, i.e. in
finding pure imaginary solutions of |T (s, e−hs)| = 0. For such s,
we know that z = e−hs lies on the complex unit circle, i.e. in
{z ∈ C : |z| = 1}.

Definition 2.1. A matrix polynomial A(s) =
∑m

k=0Aksk is said to
have alternating coefficient structure if one of the following two
conditions is true:
1. A∗

k = Ak if k is even, A∗

k = −Ak if k is odd 2. A∗

k = −Ak if k is even,
A∗

k = Ak if k is odd.
In the first casewe say thatA(s) has alternating coefficient structure
with Hermitian constant term, while in the second we say that
A(s) has alternating coefficient structure with skew Hermitian
constant term.

Note that the following are equivalent:
1. A(s) has alternating coefficient structure with Hermitian con-
stant term;
2. iA(s) has alternating coefficient structure with skew Hermitian
constant term (i =

√
−1).

Definition 2.2. Amatrix delay differential equation of the form (1)
is said to satisfy Hypothesis H if both of the matrix polynomials
J(s) and E(s) have alternating coefficient structure with Hermitian
constant term.

It is worth noting immediately that if both J(s) and E(s) have
alternating coefficient structure with skew Hermitian constant
term, then multiplication of both sides of (1) by i gives us a matrix
delay differential equation which satisfies Hypothesis H. This is
convenient for examples and applications, since it allows for con-
version to a common form.

Lemma 2.1. Consider A(s) =
∑m

k=0Aksk, each Ak ∈ Cn×n. Condi-
tions 1, 2 below are equivalent, and likewise equivalent are conditions
3, 4.

1. A(s) has alternating coefficient structure with Hermitian con-
stant term.

2. A(s)∗ = A(s) for all imaginary axis s.
3. A(s) has alternating coefficient structure with skew Hermitian

constant term.
4. A(s)∗ = −A(s) for all imaginary axis s.

Proof. 1⇒ 2: Supposewe have 1, and let s ∈ iR. If k is even, then sk
is real, thus Aksk is Hermitian. If k is odd, then sk is pure imaginary,
thus Aksk is again Hermitian. We conclude that A(s)∗ = A(s).
2 ⇒ 1: Suppose A(s)∗ = A(s) throughout iR. Then

∑m
k=0A

∗

k(−s)k =∑m
k=0Aksk throughout iR. Matching polynomial coefficients, we see

that A∗

k = Ak for even k and A∗

k = −Ak for odd k.
3 ⇔ 4: The proof is similar to the proof of ‘‘1 ⇔ 2’’. □

We will have use for a matrix pair which is companion to A(s).

Definition 2.3. Given a matrix polynomial A(s) =
∑m

k=0Aksk, we
define the companion pair of A, or comp(A), as follows:
1. If A(s) is degree 1 in s, then comp(A) is the matrix pair (−A0, A1).
2. If A(s) is degree 2 or higher in s, then comp(A) = (−C0, C1), with

C1 =

[
Am 0
0 I(m−1)n

]
, C0 =

[
Am−1 . . . A0
−I(m−1)n 0

]
. (4)

Note that the generalized eigenvalues of comp(A) are the com-
plex numbers s for which A(s) is singular.

The next two lemmas and the corollary focus on the interplay
between Hermitian matrices and matrices which are sign definite
or semi-definite. With this lens the theorems of the following
section will be readily apparent.

Lemma2.2. Let the complexmatrix E beHermitian and semi-definite,
and let x ∈ Cn. Then x∗Ex = 0 if, and only if, Ex = 0.

Proof. Suppose E is semi-definite, E ̸= 0. Note that E = U∗DU
with U unitary and D = diag(Dr , 0n−r ); here Dr is sign definite and
real diagonal of dimension r . Setting y = Ux, write x∗Ex = 0 as
y∗Dy = 0, and note that y∗Dy = 0 is equivalent to Dy = 0. This
in turn is equivalent to U∗Dy = 0, i.e. to Ex = 0. In conclusion,
x∗Ex = 0 is equivalent to Ex = 0. □

Lemma2.3. Let A, E be Hermitianmatrices and let E be semi-definite.
Then exactly one of the following holds:

1. all solutions λ of |λE − A| = 0 are real
2. Ker(E) ∩ Ker(A) ̸= (0), thus |λE − A| = 0 for all complex λ.

Proof. Suppose |λE − A| = 0. We have nonzero v ∈ Cn with
λEv = Av, so that both v∗Av = v∗λEv = λv∗Ev and v∗Av =

(A∗v)∗v = (Av)∗v = (λEv)∗v = λv∗E∗v = λv∗Ev. Thus λv∗Ev =

λv∗Ev.
Now if λ is not real, then λ ̸= λ, and v∗Ev = 0. From Lemma 2.2

we then see Ev = 0, and 0 = λEv = Av. We conclude that v ∈

Ker(A)∩Ker(E) if |λE−A| = 0 andλ is not real, i.e.Ker(E)∩Ker(A) ̸=

(0) if there is a nonreal solution λ to |λE − A| = 0. □

Corollary 2.1. Let A, E be Hermitian matrices and let E be sign
definite. Then all solutions of |λE − A| = 0 are real.

Proof. In this case Ker(E) = (0), thus Ker(E) ∩ Ker(A) = (0), and
the only possibility in Lemma 2.3 is ‘‘1’’. □

Note that Corollary 2.1 returns us to the fact that the product
of a sign definite matrix (E−1) and a Hermitian matrix (A) has real
eigenvalues.

3. Main propositions

Prior to our main propositions, we open with some guidance
on whether the eigenvalues proposed in our necessary conditions
are true eigenvalues. Discounting the casewhere a proposed eigen-
value is zero but its associated exponential must be minus unity,
we will see that the necessary conditions given later are also
sufficient. Then we proceed to our main propositions, which are
fairly evident from our preparation in Section 2.
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