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a b s t r a c t

Non-smooth sandwich systems with dead-zone widely exist in the real engineering applications. For
accurately detecting its faults, a novel robust observer has been proposed in this paper. With the
consideration of themodel uncertainties, disturbances, and switching errorwhich specially belongs to the
system, the so-called general disturbance is defined. After that, the conventional dynamic robust observer
designmethod can be applied to the system. Then, for saving the computing time and effectively reducing
the effect of the disturbances to the residual, themain frequencies of the disturbances have been identified
by the spectrum analysis of the residual created by the conventional observer and the zeros assignment
methodology has been applied to get one feedback matrix of the robust observer. Finally, the rest of the
feedback matrices of the robust observer can be obtained by solving an optimal problemwith H∞,F/H−,F
as the minimizing object. For verifying the effectiveness of this novel robust observer, the comparison
between the proposed robust non-smooth scheme and the conventional method has been made. The
final results show that the proposed robust fault detection approach can detect the actuator and sensor
faults of the system more accurately and timely with a lower missing and false alarm rates comparing
with the conventional one.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A dead zone is a non-smooth and nonlinear character which
widely exists in all kinds of motors, mechanical transition systems,
hydraulic systems, andmechatronic systems [1]. Dead zoneusually
does not exist independently. On the contrary, it usually connects
with other parts. For instance, in a DC motor servo system, the
linear parts of the power amplifier and the DC motor can be
regarded as the front linear subsystemwhile the load of the motor
can be regarded as the back linear subsystem. The dead zone of
the DC motor embedded between the two dynamic linear parts
and this structure can be regarded as sandwich systems with dead
zone. In the industry field, many systems can be described as
sandwich systems with dead zone such as a hydraulic actuator of
aircraft lift [2], position stage driven by a DCmotor, and a hydraulic
actuator controlled by a pilot valve etc. [3].

In engineering practice, the dead zone does not exist indepen-
dently and it usually connects with other conventional parts. If the
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dead zone nonlinearity is sandwiched into two linear dynamic sub-
systems, this system can be defined as the sandwich system with
dead zone. In real application, the model uncertainties and distur-
bances always exist and how to design a robust fault prediction
observer to restrain the effect of the model uncertainties and
disturbances are of crucial importance [4,5]. A Luenberger-type
switching observer is designed for a class of hybrid linear sys-
tems [6,7], while an observer is proposed for a class of piecewise
affine systems, respectively in [8,9].

In [10], a novel fault detection and identification (FDI) scheme is
presented for a class of nonlinear systems with model uncertainty.
The heart of this approach is an on-line approximator, referred to
as fault tracking approximator (FTA). In [11], a new sensor fault
detection, isolation, and identification (FDII) strategy is proposed
using the multiple-model (MM) approach. The scheme is based
on multiple hybrid Kalman filters (MHKFs), which represents an
integration of a nonlinear mathematical model of the system with
a number of piecewise linear (PWL) models. The work in [12]
investigates a fault detection and accommodation (FDA) problem
of saturated actuators for trajectory tracking of underactuated
surface vessels (USVs) in the presence of nonlinear uncertainties.
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Fig. 1. The structure of the sandwich systems with dead zone.

In [13], a new strategy for integration of fault estimation
within fault-tolerant control is proposed. A new delay-derivative-
dependent sliding mode observer (SMO) design is given in [14] for
a class of linear uncertain time-varying delay systems is presented.
In [15], the problem of fault detection for discrete-time Lipschitz
nonlinear systems with additive white Gaussian noise channels
subject to signal-to-noise ratio constraints is investigated. An
unknown input observer-based robust fault estimation for systems
corrupted by partially decoupled disturbances is proposed, and
the effectiveness of this method is verified by simulations [16].
In [17], both the steering angle and sideslip angle of a vehicle
can be estimated by using an unknown input observer as well.
In the unknown input observer, all the model uncertainties,
disturbances, and even faults can be regarded as the unknown
input in this observer. From the above literature review, it is clear
that many works focusing on observer designs for specific non-
linear systems have been done in recent years by using a multiple-
model approach, a hybrid Kalman filter, a sliding mode observer,
and an unknown observer.

Note that the work on a state-estimation of the sandwich
system with dead zone, backlash, and hysteresis, has been
conducted respectively [18–20]. Recently, an observer to realize
the more accurate fault detection of a mechanical system with
inherent backlash without considering the model uncertainties
and disturbances is designed in [21].

However, the sandwich systemwith dead zone not only has the
non-smooth and nonlinear part which connects with the front and
back linear parts but also has the immeasurable interval variables
i.e. , the input y1(k) and output v(k) of the dead zone. In other
words, only the input variable u(k) and the output variable y2(k)
are measurable (See in Fig. 1). In addition, in the robust fault
detection observer design process, the model uncertainties and
disturbances have to be considered. Therefore, this kind of system
is much more complicated than the traditional ones and accurate
fault prediction can be very challenging. Till now, from the authors’
best knowledge, the problem of observers design to deal with
robust fault prediction for the sandwich systemwith dead zone yet
has not been fully investigated, whichmotivates our currentwork.

2. Model of the sandwich system with dead zone

A typical sandwich systemwith dead zone and the correspond-
ing architecture of this system is shown in Fig. 1, where, u(k) and
y2(k) are the measurable input and output of the system, respec-
tively. y1(k) and v(k) are the interval variables which cannot be
measured directly. L1(·) is the front linear subsystem and L2(·) is
the back linear subsystem.

The front linear subsystem L1(·) can be described as
x1(k + 1) = A1x1(k) + B1u(k)
y1(k) = C1x1(k)

(1)

and the back linear subsystem L2(·) can be described as
x2(k + 1) = A2x2(k) + B2v(k)
y2(k) = C2x2(k)

(2)

where xi ∈ Rni×1,Ai ∈ Rni×ni , Bi ∈ Rni×1, yi ∈ R1×1, Ci ∈

R1×ni , u ∈ R1×1, v ∈ R1×1, and i = 1, 2.

Here, x1i and x2i represent the ith state variable of L1 and L2,
respectively. Ai ∈ Rni×ni is the state transition matrix, Bi ∈ Rni×1

is the input matrix, y2 ∈ R1×1 is the output variable of the whole
system, ni represents the dimension of the ith linear subsystem,
u ∈ R1×1 is the input variable, y1 ∈ R1×1 is the input variable of the
dead zone and v ∈ R1×1 is the output variable of the dead zone.
Without loss of generality, in the state-space function, for L1 and
L2, we set x1n1(k) = y1(k) and x2n2(k) = y2(k), respectively.

Based on Refs. [2,3] as well as the property of the dead zone in
middle part of Fig. 1, the model of the dead zone can be obtained
as follows.

Define m(k) and v1(k), respectively, as the imposed variables,
i.e.,

m(k) = m1 + (m2 − m1)h(k), (3)
v1(k) = m(k)(y1(k) − D1h1(k) + D2h2(k)), (4)

where, h(k) =


1, y1(k) < 0
0, else , h1(k) =


1, y1(k) > D1
0, else ,and h2(k) =

1, y1(k) < −D2
0, else are the switch functions which are used to judge

and switch the operation zones, i.e., the linear zone and the dead
zone. Based on the properties of dead zone, it yields

ṽ(k) = v1(k) − h3(k)v1(k) = (1 − h3(k))v1(k) (5)

where, h3(k) =


1, h1(k) + h2(k) = 0
0, h1(k) + h2(k) = 1 is the switch function utilized

to separate the linear zones from the dead zone.
Based on (5), when h3(k) = 0 the system operates on linear

zone and ṽ(k) = v1(k). When h3(k) = 1 the system operates on
the dead zone and ṽ(k) = v1(k) − v1(k) = 0.

Substituting (4) into (5) results in

ṽ(k) = (1 − h3(k))v1(k)
= (1 − h3(k))m(k)(y1(k) − D1h1(k) + D2h2(k))
= (1 − h3(k))m(k)y1(k) − (1 − h3(k))m(k)D1h1(k)

+ (1 − h3(k))m(k)D2h2(k). (6)

By substituting (6) into (3) and noticing y1(k) = x1n1(k), it results
in

x2(k + 1) = A22x2(k + 1) + B22v(k) = A22x2(k + 1)
+ B22[(1 − h3(k))m(k)x1n1(k) − (1 − h3(k))m(k)D1h1(k)

+ (1 − h3(k))m(k)D2h2(k)]. (7)

Based on (1), (2) and (7), it leads to


x1(k + 1)
x2(k + 1)


=


A1 0
A21i A2

 
x1(k)
x2(k)


+


B1
0


u(k) +


0

θ22i


y(k) = Cx(k)

(8)

where A21i =

β1 β2i


, β1 = 0 ∈ Rn2×(n2−1),

β2i =


B2m1(k), i = 1
0, i = 2
B2m2(k), i = 3

, β2i ∈ Rn2×1, θ22i =


−B2m1(k)D1, i = 1
0, i = 2
B2m2(k)D2, i = 3

,

θ22i ∈ Rn2×1, and x(k) =


x1(k)
x2(k)


∈ R(n1+n2)×1.

The index of the operation zone is defined as i =
1, x1n1 > D1 (linear increasing zone)
2, −D2 ≤ x1n1 (k) ≤ D1 (dead zone)
3, x1n1 (k) < −D2 (linear decreasing zone).

.

Because only the output y2(k)of the sandwich systemwith dead
zone described in Section 2 of Fig. 1 can bemeasurable, thenwe can
obtain that C = [0, 0, . . . , 0, 1] ∈ R1×(n1+n2). For the convenience
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