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a b s t r a c t

New design of interval observers for continuous-time systems with discrete-time measurements is
proposed. For this purpose new conditions of positivity for linear systems with sampled feedback
are obtained. A sampled-data stabilizing control is synthesized based on provided interval estimates.
Efficiency of the obtained solution is demonstrated on examples.
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1. Introduction

State estimation in dynamical systems is a rather complicated
and practically important problem [1,2]. Sparse discrete measure-
ment of the output for a continuous-time plant makes solution of
this problemevenmore intricate [3–7]. An observer synthesis is es-
pecially problematical for the cases when the model of a nonlinear
system is uncertain, and it contains parametric and/or signal un-
certainties. An observer solution for thesemore complex situations
is highly demanded in applications. Interval or set-membership es-
timation is a promising framework for observation in uncertain
systems [8–13], when all uncertainty is included in the corre-
sponding intervals or polytopes, and as a result the set of admis-
sible values (an interval) for the state is provided at each instant of
time. The size of that set is related with the level of uncertainty of
the plant model.

In this work the problem of design of interval sampled-data
observers is studied. A peculiarity of an interval observer is that
in addition to stability conditions, some restrictions on positivity of
estimation error dynamics have to be imposed (in order to envelop
the system solutions). In the present work we are going to use
the time-delay framework for modeling and analysis of sampled-
data systems [14–17]. The first objective of this work is to recall
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the delay-dependent positivity conditions, which are based on
the theory of non-oscillatory solutions for functional differential
equations [18,19], and to develop them to the time-varying
sampled-data case, i.e. new sampling dependent conditions of
positivity are derived. Next, continuing the research direction
of [20], where the pure time-delay case has been studied, design of
interval observers is given for continuous-time linear systemswith
discretemeasurements (with time-varying sampling). The existing
solutions in the field [21,22] are based on delay-independent
positivity conditions, and the interval observer constructed in [22]
has a hybrid nature, which is more complicated than one proposed
in the present work. Finally, following the ideas of [23] a sampled-
data stabilizing control algorithm is synthesized based on interval
estimates.

The paper is organized as follows. Some preliminaries are
given in Section 2. The delay-dependent positivity conditions
for continuous systems under sampled-data measurements are
presented in Section 3. The interval observer design is performed
for a class of linear systems (or a class of nonlinear systems in the
output canonical form)with sampledmeasurements in Section 4. A
dynamic output control design is carried out in Section 5. Examples
of numerical simulation are presented in Section 6.

2. Notation and preliminaries

In the rest of the paper, the following notation will be used:
• R is the Euclidean space (R+ = {τ ∈ R : τ ≥ 0});
• |x| denotes the absolute value of x ∈ R, ∥ · ∥ is the Euclidean

norm of a vector or induced norm of a matrix;
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• for a Lebesgue measurable and locally essentially bounded
input u : R+ → Rp the symbol ∥u∥[t0,t1] denotes its L∞ norm
∥u∥[t0,t1) = ess supt∈[t0,t1) ∥u(t)∥, or simply ∥u∥ if t0 = 0 and
t1 = +∞, the set of all such inputs with the property ∥u∥ < ∞

will be denoted as L
p
∞;

• for a matrix A ∈ Rn×n the vector of its eigenvalues is denoted as
λ(A);

• In and 0n×m denote the identity and zeromatrices of dimensions
n × n and n × m respectively;

• aR b corresponds to an elementwise relation R (a and b are
vectors or matrices): for example a < b (vectors) means ∀i :

ai < bi;
• for a symmetric matrix Υ , the relation Υ ≺ 0 (Υ ≼ 0) means

that the matrix is negative (semi) definite.

2.1. Interval bounds

Given a matrix A ∈ Rm×n define A+
= max{0, A}, A−

= A+
− A

and |A| = A+
+ A−. Let x ∈ Rn be a vector variable, x ≤ x ≤ x for

some x, x ∈ Rn, and A ∈ Rm×n be a constant matrix, then [24]:

A+x − A−x ≤ Ax ≤ A+x − A−x. (1)
A matrix A ∈ Rn×n is called Metzler if Ai,j ≥ 0 for all 1 ≤ i ≠ j ≤ n.

2.2. Delay-dependent positivity

Consider a scalar time-varying linear systemwith time-varying
delays [18]:
ẋ(t) = a0(t)x[g(t)] − a1(t)x[h(t)] + b(t), (2)
x(θ) = 0 for θ < 0, x(0) ∈ R, (3)
where a0 ∈ L∞, a1 ∈ L∞, b ∈ L∞, h(t)− t ∈ L∞, g(t)− t ∈ L∞

and h(t) ≤ g(t) ≤ t for all t ≥ 0. For the system (2) the initial con-
dition in (3) is, in general, not a continuous function (if x(0) ≠ 0).

The following result proposes delay-independent positivity
conditions.

Lemma 1 ([18, Corollary 15.7]). Let 0 ≤ a1(t) ≤ a0(t) for all t ≥ 0.
If x(0) ≥ 0 and b(t) ≥ 0 for all t ≥ 0, then the corresponding
solution of (2), (3) x(t) ≥ 0 for all t ≥ 0.

Recall that in this case positivity is guaranteed for ‘‘discontinuous’’
initial conditions. The peculiarity of the condition 0 ≤ a1(t) ≤

a0(t) is that it may correspond to an unstable system (2). In
order to overcome this issue, delay-dependent conditions can be
introduced.

Lemma 2 ([18, Corollary 15.9]). Let 0 ≤
1
e a0(t) ≤ a1(t) for all t ≥ 0

and

sup
t∈R+

 t

h(t)


a1(ξ) −

1
e
a0(ξ)


dξ <

1
e
,

where e = exp(1). If x(0) ≥ 0 and b(t) ≥ 0 for all t ≥ 0, then
x(t) ≥ 0 for all t ≥ 0 in (2), (3).

These lemmas describe positivity conditions for a scalar system,
they can also be extended to a n-dimensional system.

Corollary 1 ([20]). The system

ẋ(t) = A0x(t) − A1x(t − τ(t)) + b(t), t ≥ 0,

where x(t) ∈ Rn, τ : R+ → [−τ , 0] and b : R+ → Rn
+
are Lebesgue

measurable functions of time, τ ∈ R+, with initial conditions

x(θ) = 0 for − τ ≤ θ < 0, x(0) ∈ Rn
+
,

is positive (i.e. x(t) ≥ 0 for all t ≥ 0) if −A1 is Metzler, A0 ≥ 0, and

0 ≤ (A0)i,i ≤ e(A1)i,i < (A0)i,i + τ−1

for all 1 ≤ i ≤ n.

3. Positivity of sampled systems

Consider a time-invariant version of (2):

a0(t) = a0, a1(t) = a1, g(t) = t, (4)

h(t) = tk ∀t ∈ [tk, tk+1),
tk+1 = tk + Tk, k ≥ 0, t0 = 0, (5)

where 0 < Tk ≤ T is a time-varying sampling rate. Then Lemma 2
admits the following corollary.

Corollary 2. For (4), (5) let 0 ≤ a0 ≤ ea1 < a0 + T
−1

. If x(0) ≥ 0
and b(t) ≥ 0 for all t ≥ 0, then the corresponding solution of (2)–(5)
x(t) ≥ 0 for all t ≥ 0.

However, aswe can see from the result given below, the conditions
of Corollary 2 are very conservative:

Lemma 3. Consider the system (2), (4), (5)with x(0) ≥ 0 and b(t) ≥

0 for all t ≥ 0, then x(t) ≥ 0 for all t ≥ 0 provided that one of the
following conditions is satisfied:
(i) a1 ≤ 0;
(ii) a0 ≥ a1 > 0;
(iii) a1 > 0, a1 > a0, T ≤

1
a0

ln a1
a1−a0

.

Note that

lim
a0→0

1
a0

ln
a1

a1 − a0
=

1
a1

,

then condition (iii) for a0 = 0 reads: a1 > 0 and T ≤ a−1
1 .

Proof. Such a system for t ∈ [tk, tk+1) for any k ≥ 0 has solution:

x(t) = ea0(t−tk)x(tk) +

 t

tk
ea0(t−s)

[b(s) − a1x(tk)]ds

and for any b(t) ≥ 0 the integral
 t
tk
ea0(t−s)b(s)ds is always pos-

itive, then in order to identify the conditions of positivity of the
solutions the worst case b(t) = 0 for t ≥ 0 has to be analyzed. For
this case and for t ∈ [tk, tk+1), if a0 ≠ 0 we obtain

x(t) =


1 −

a1
a0


ea0(t−tk) +

a1
a0


x(tk),

and for a0 = 0,

x(t) = [1 − a1(t − tk)]x(tk).

Therefore, for x(tk) ≥ 0 the solutions are positive if

1−

a1
a0


ea0(t−tk)

+
a1
a0

≥ 0, which is true for (a0 ≠ 0)

a1 ≤ 0 or a0 ≥ a1 > 0 or a1 > 0, a1 > a0,

T ≤
1
a0

ln
a1

a1 − a0
,

or 1 − a1(t − tk) ≥ 0 that is satisfied for (a0 = 0)

a1 ≤ 0 or a1 > 0, T ≤ a−1
1 .

Using L’Hôpital’s rule we derive

lim
a0→0

1
a0

ln
a1

a1 − a0
= lim

a0→0

ln a1
a1−a0

a0
= lim

a0→0

1
a1−a0

1
=

1
a1

,

then the stated delay-dependent positivity conditions follow (the
case for a0 ≠ 0 includes a0 = 0). �

Note that the result of Lemma 3 deals only with positivity of
the solutions, but not with stability, and the case of Lemma 1
is completely covered. Lemma 2 deals (implicitly through non
oscillatory solution behavior) with stable positive systems, then
the following extension of Lemma 3 can be proposed.
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