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a b s t r a c t

A proper representation of a linear differential system is a representation with no singularity at infinity.
It is shown that such a representation always exists. It turns out that for proper representations having
minimal number of rows is equivalent to havingminimal total rowdegree. One is led therefore to a natural
definition of the notion of minimality. What is remarkable is that a minimal proper representation is
uniquely determined up to premultiplication by a unimodular polynomial matrix of special form. This
uniqueness result allows, in particular, to introduce important integer invariants.
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1. Introduction

Throughout, F is the field of real or complex numbers, n and q
are fixed positive integers, s = (s1, . . . , sn) is a sequence of in-
determinates, and s0 is an extra (‘‘homogenizing’’) indeterminate.
We let S = F[s] and T = F[s0, s], and denote by U the space of
C∞-functions (or distributions) defined on some domain of Rn.

Proper polynomial matrices are polynomial matrices (with
entries in S) that behave well at infinity. They play a significant
role in the classical one-dimensional linear systems theory, andwe
claim that their role in higher dimensions must be analogous. (The
infinity is the complement of the affine space An to the projective
space Pn, that is, the hyperplane in Pn defined by the equation
s0 = 0.)

Assume that we have a linear time-invariant (LTI) differential
systemB ⊆ Uq, and assume that it is represented by a polynomial
matrix R ∈ Sp×q, so that

B = KerR(∂).

As is well-known, the submodule RtrSp ⊆ Sq is independent
of the choice of R and is an intrinsic invariant of B; moreover,
by Oberst’s duality, this is a full invariant. There is a procedure,
called homogenization (and denoted here by the superscript ‘‘h’’),
that produces homogeneous things from non-homogeneous ones.
Homogenizing the submodule RtrSp ⊆ Sq, we get a homogeneous
submodule (RtrSp)h ⊆ T q. Like RtrSp, thismodule also is an intrinsic
full invariant. Alternatively, one can homogenize first R and then
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take the homogeneous submodule (Rh)trT p
⊆ T q. The latter,

however, depends on R and is not an invariant of B. One has

(Rh)trT p
⊆ (RtrSp)h.

The equality holds if and only if s0 is not a zero divisor on
the quotient module T q/(Rh)trT p. In our opinion, representations
having this property are of primary importance, and we call them
proper.

We think that it is not proper to represent an LTI differential
system via an improper polynomial matrix since it does not
provide an adequate description at infinity.

Remark. As explained in the concluding section, properness
should be interpreted as the property of ‘‘controllability at infin-
ity’’.

In this paper, we prove that proper representations always
exist. Next, we show that for proper representations there is a
good notion of minimality. Namely, we show that if R is a proper
representation of an LTI differential system B, then the following
two conditions are equivalent:

(a) R has theminimumpossible number of rows (among all proper
representations of B);

(b) Rhas theminimumpossible total rowdegree (among all proper
representations of B).

Proper representations satisfying these conditions are called
minimal. The uniqueness result that we prove states that minimal
proper representations are uniquely determined up to, the so-
called, Brunovsky equivalence.
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Remark. As is well-known, in dimension 1, an LTI differential
system has a full row rank proper representation, which certainly
is a minimal proper representation. This is unfortunately not the
case in higher dimensions; even more, an LTI differential system
may have a full row rank representation, but not a full row rank
proper representation (see Example 10 in Section 6).

For every d ∈ Z, we shall write S≤d to denote the space of poly-
nomials (in S) of degree ≤ d and Td for the space of homogeneous
polynomials (in T ) of degree d. It is worth noting that S≤d = {0}
and Td = {0} for negative d. (In Section 6, we shall need homoge-
neous polynomials in S as well, and Sd will stand for the space of
all homogeneous polynomials that have degree d.) For a positive
integer p, we write [1, p] for the set {1, . . . , p}.

This article can be viewed as an attempt to generalize Section
X in Willems [1] to higher dimensions. We remark also that much
of material presented here is adapted from [2] (which, in turn, is
based on [3]).

2. Preliminaries on graded and filtered modules

Powerful tools for the study of LTI differential systems are
S-modules. But S-modules disregard the infinity, and therefore
are useless when one wants to carry out the study at infinity.
Graded T -modules have the advantage that they allow to study
LTI differential systems (simultaneously) both on the finite domain
and at the infinity.

A graded module over T is a module M together with a
gradation, i.e., a sequence M0,M1,M2, . . . of F-linear subspaces of
M such that

M =


d≥0

Md and skMd ⊆ Md+1 ∀k, d.

(For d < 0, one puts Md = {0}.) The elements of Md are called the
homogeneous elements of M of degree d. A submodule N ⊆ M is
called a graded submodule ofM if N =


(N ∩ Md).

For a graded T -module M and a nonnegative integer k, one
denotes by M(−k) the graded T -module whose homogeneous
components are defined by

M(−k)d = Md−k.

Example 1. Let p be a positive integer. Then, a function a : [1, p]
→ Z+ determines on T p a gradation consisting of the spaces

T p(−a)d = {f ∈ T p
| deg(fi) = d − a(i)} (d ≥ 0).

Themodule T p equippedwith this gradation is denoted by T p(−a).
Notice that

T p(−a) = T (−a(1)) ⊕ · · · ⊕ T (−a(p)).

A homomorphism of graded modules M → N is a module
homomorphism u : M → N such that u(Md) ⊆ Nd for all d ≥ 0.

Example 2. Let a and b be nonnegative integers. Homomorphisms
from T (−a) to T (−b) are exactly multiplications by homogeneous
polynomials of degree a − b. That is,

Hom(T (−a), T (−b)) = Ta−b.

A polynomial matrix with entries in T is called column-
homogeneous if all the entries in each column are homogeneous
and have the same degree.

Example 3. A column-homogeneous polynomial matrix H of size
q × p and with column degree function a determines a homomor-
phism of graded modules

H : T p(−a) → T q.

The homogenization in degree d is the bijective linear map θd :

S≤d → Td defined by the formula

θd(f ) = sd0f (s/s0).

(Here and below s/s0 stands for (s1/s0, . . . , sn/s0).)

Example 4. Let n = 2 and f = 2s31s2 + 1. Then

θ4(f ) = 2s31s2 + s40 and θ5(f ) = 2s0s31s2 + s50.

If A ⊆ Sq is a submodule, the homogenization Ah of A is defined
to be

Ah
=


d≥0

Ah
d,

where Ah
d = θd(A≤d). This is the smallest graded submodule of T q

that contains A.
The dehomogenization is the operator T → S defined by

u(s0, s) → u(1, s).

It is worth noting that if d ≥ 0, then

∀u ∈ Td, θd(u(1, s)) = u and
∀f ∈ S≤d, (θdf )(1, s) = f .

(1)

If B ⊆ T q is a graded submodule, the dehomogenization Bdh of
B is its image under the dehomogenization operator, i.e.,

Bdh
= {u(1, s)| u ∈ B}.

This is a submodule of Sq.
We pass now to filtered S-modules, which are more natural

tools than graded T -modules. (However, graded modules are
superior from the purely technical point of view.) The point is
that the modules associated with LTI differential systems have the
structure of a filtered S-module.

LetM be amodule over S. A filtration onM is an ascending chain

M≤0 ⊆ M≤1 ⊆ M≤2 ⊆ · · ·

of linear subspaces ofM such that

M =


d≥0

M≤d and skM≤d ⊆ M≤d+1 ∀k, d.

Amodule with a filtration is called a filtered module. A submodule
N of a filtered moduleM is a filtered module with the filtration

N≤d = N ∩ M≤d, d ≥ 0.

(For d < 0, put M≤d = {0}.) If M is a filtered module and k a non-
negative integer, we denote byM[−k] the filteredmodulewith the
filtration defined by

M[−k]≤d = M≤d−k.

Example 5. Let p be a positive integer. Then, a function a : [1, p]
→ Z+ determines on Sp a filtration consisting of the spaces

Sp[−a]≤d = {f ∈ Sp| deg(fi) ≤ d − a(i)} (d ≥ 0).

The module Sp equipped with this filtration is denoted by Sp[−a].
Notice that

Sp[−a] = S[−a(1)] ⊕ · · · ⊕ S[−a(p)].

A homomorphism of filtered modules M → N is a module ho-
momorphism u : M → N such that

∀d ≥ 0, u(M≤d) ⊆ N≤d.

Notice that Ker(ϕ) is a graded submodule of M and Im(ϕ) is a
graded submodule of N .
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