
Systems & Control Letters 94 (2016) 31–36

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Characterization of maximum hands-off control
Debasish Chatterjee a,∗, Masaaki Nagahara b, Daniel E. Quevedo c, K.S. Mallikarjuna Rao d

a Systems & Control Engineering, IIT Bombay, Powai, Mumbai 400076, India
b Institute of Environmental Science and Technology, The University of Kitakyushu, Fukuoka 808-0135, Japan
c Automatic Control Group, EIM-E, Warburger Strasse 100, 33098 Paderborn, Germany
d Industrial Engineering & Operations Research, IIT Bombay, Powai, Mumbai 400076, India

a r t i c l e i n f o

Article history:
Received 1 July 2015
Received in revised form
2 May 2016
Accepted 4 May 2016

Keywords:
Maximum hands-off control
L0 optimal control
Sparse control

a b s t r a c t

Maximum hands-off control aims to maximize the length of time over which zero actuator values are
applied to a systemwhen executing specified control tasks. To tackle such problems, recent literature has
investigated optimal control problems which penalize the size of the support of the control function and
thereby lead to desired sparsity properties. This article gives the exact set of necessary conditions for a
maximum hands-off optimal control problem using an L0-norm, and also provides sufficient conditions
for the optimality of such controls. Numerical example illustrates that adopting an L0 cost leads to a
sparse control, whereas anL1-relaxation in singular problems leads to a non-sparse solution.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by a diverse array of applications in automotive
industry, railway vehicles, and networked control, the recent
works [1,2] dealt in detail with the concept of maximum hands-
off control. The purpose of maximum hands-off control is to
design actuator signals which are most often zero, but nonetheless
achieve given control objectives. This motivates the use of
instantaneous cost functions where the control effort is penalized
via the L0-‘‘norm’’, thereby leading to a sparse control function,
cf. [3–9]. Sparse controls are of great importance in situations
where a central processor must be shared by different controllers,
and sparse control is a new and emerging area of research,
including applications in the theory of control of partial differential
equations [10–14].

Due to the discontinuous and non-convex nature of the
instantaneous cost function in L0-optimal control problems,
solving such problems is in general difficult. Hence, the precursor
article [2] focused on relaxations to the problem, akin to
methods used in compressed sensing applications [15]. To be
more precise, [2] examined smooth and convex relaxations of
the maximum hands-off control problem, including considering
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an L1-cost and regularizations with an L2-cost to obtain
smooth hands-off control. (It is a well-known and classical result
that under ‘‘nonsingularity’’ assumptions on the control system
[16, Chapter 8], L1-costs lead to sparse solutions in the control.
However, in singular problem instances, it is unclear whether
L1-regularizations lead to sparse solutions.) The exactL0-optimal
control problem was not investigated in [2].

The purpose of the present article is to complement [2] by
directly dealing with the underlying non-smooth and non-convex
L0-optimal control problem without the aid of smooth or convex
relaxations. We will focus on nonlinear controlled dynamical
systems of the form

ż(t) = φ

z(t), u(t)


(1)

with state z, input u and where φ : Rd
× Rm

−→ Rd is a continu-
ously differentiable map describing the open-loop system dynam-
ics. Themaximumhands-off control problem aims tominimize the
support of the control map, or in other words, maximize the time
duration over which the control map is exactly zero.

In other words, given real numbers a, b ∈ Rwith a < b, vectors
A, B ∈ Rd, a compact setU ⊂ Rm containing 0 ∈ Rm in its interior,
we consider the optimal control problem

minimize
u

∥u∥L0([a,b])

subject to

ż(t) = φ

z(t), u(t)


for a.e. t ∈ [a, b],

z(a) = A, z(b) = B,
u : [a, b] −→ U Lebesgue measurable.

(2)
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Here the L0-‘‘norm’’1 of a map u : [a, b] −→ U is defined by the
Lebesgue measure of the support of u, i.e.,

∥u∥L0([a,b]) := Leb


s ∈ [a, b]
 u(s) ≠ 0


.

Observe that if the minimum time to transfer the system states
from A to B is larger than the given duration b−a, then the optimal
control problem (2) has no solution. Thus, a standing assumption
used throughout this work is that there is a feasible solution to
(2). In other words, despite the limited control authority described
by the compact set U, we shall assume that it is possible to steer
the system states from A to B in finite time b − a. Observe also
that, unlike minimum attention control à la [17], the optimal
control problem (2) does not penalize the rate of change of the
control. Nonetheless, (2) can be viewed through the looking glass
of least attention in the sense that the control is ‘active’ for the
least duration of time. The current work investigates optimality
in (2) using a nonsmooth maximum principle as summarized in
[18, Chapter 22].

The main contributions and outline of this article are given
below:

(i) We show that (2) can be recast in the form of an optimal con-
trol problem involving an integral cost with a discontinuous
cost function. We apply a non-smooth Pontryagin maximum
principle directly to problem (2) and obtain an exact set of
necessary conditions for optimality. This result is presented in
Section 2. It characterizes solutions to (2) provided that they
exist.

(ii) Section 3 sheds further insight into the case where the
system dynamics in (1) are linear. Section 4 illustrates that,
perhaps contrary to intuition, in singular problem instances,
L1-relaxationsmay fail to give sparse controls; cf. [16, Chapter
8].

(iii) For plant models that are linear in the states, we show
in Section 5 that under normality of optimal state-action
trajectories, the necessary conditions for optimality are also
sufficient.

Notation. The notations employed in this article are standard.
The Euclidean norm of a vector z, belonging to the d-dimensional
Euclidean space Rd, is denoted by ∥z∥; vectors are treated as
column vectors. For a set S we let z −→ 1S(z) denote the indicator
(characteristic) function of the set S defined to be 1 if z ∈ S and 0
otherwise.

Remark 1. The version of the maximum hands-off control prob-
lem posed in [1,2] is slightly different from the one we examine in
(2). Indeed, [2] studies the following problem:

minimize
u

1
b − a

m
i=1

λi ∥ui∥L0([a,b])

subject to

ż(t) = φ

z(t), u(t)


for a.e. t ∈ [a, b],

z(a) = A, z(b) = B,
u : [a, b] −→ U Lebesgue measurable,

(3)

where {λi}
m
i=1 are given positive weights. This cost function

features the controls of a multivariable plant as additive terms. In
contrast, and by noting that b

a
1{0}(u(s)) ds =

 b

a

m
i=1

1{0}(ui(s)) ds,

1 Note that our convention of calling the map u −→ ∥u∥L0([a,b]) a ‘‘norm’’ is
technically not precise because this map does not satisfy the positive homogeneity
property despite being positive definite and satisfying the triangle inequality.
However, here we prefer to overload the word ‘norm’ for brevity.

(where the 0 on the left-hand side belongs to Rm and the one on
the right-hand side belongs to R,) the cost function (2) features a
multiplicative form in the controls. The techniques exposed for (2)
in the sequel carry over in a straightforward fashion to (3). In order
not to blur the message of this article, we stick to the simpler case
of (2). �

2. Necessary conditions for optimality

By definition, we have

∥u∥L0([a,b]) = b − a −

 b

a
1{0}(u(s)) ds. (4)

Since a and b are fixed, the minimization of ∥u∥L0([a,b]) in (2) is
equivalent to theminimization of−

 b
a 1{0}(u(s)) ds. In viewof this,

we rewrite the optimal control problem (2) as

minimize
u

−

 b

a
1{0}(u(s)) ds

subject to

ż(t) = φ

z(t), u(t)


for a.e. t ∈ [a, b],

z(a) = A, z(b) = B,
u : [a, b] −→ U Lebesgue measurable.

(5)

We have the following proposition:

Proposition 1. Associated to every solution [a, b] ∋ t −→

z⋆(t),

u⋆(t)

to (2) there exist an absolutely continuous curve [a, b] ∋ t −→

p(t) ∈ Rd and a number η = 0 or 1 such that for a.e. t ∈ [a, b]:
ż⋆(t) = φ


z⋆(t), u⋆(t)


, z⋆(a) = A, z⋆(b) = B,

ṗ(t) = −


∂zφ


z⋆(t), u⋆(t)

⊤

p(t),

u⋆(t) ∈ argmax
v∈U


p(t), φ


z⋆(t), v


+ η1{0}(v)


,

(6)

and
η, p(t)


≠ (0, 0) ∈ R× R

d for all t ∈ [a, b]. (7)

A proof of Proposition 1 is provided in the Appendix.

Remark 2. Proposition 1 gives a set of necessary conditions for
optimality of state-action trajectories t −→


z⋆(t), u⋆(t)


in the

same spirit as the standard first order necessary conditions for
an optimum in a finite-dimensional optimization problem. We
see that the ordinary differential equations (o.d.e.’s) describing
the system state z⋆ and its adjoint p constitute a set of
2d-dimensional o.d.e.’swith 2d constraints. This amounts to awell-
defined boundary value problem in the sense of Carathéodory
[19, Chapter 1]. Indeed, the controlmap u⋆ is Lebesguemeasurable,
and depends parametrically on p; therefore, the right-hand side of
(1) under u⋆ satisfies the Carathéodory conditions [19, Chapter 1]
that guarantee existence of a Carathéodory solution.

Remark 3. Numerical solutions to differential equations such as
the ones in (6) are typically carried out by what are known as the
shooting and multiple shooting methods. This is an active area of
research; see [20, Chapter 3] for a detailed discussion.

Remark 4. The quadruple

η, p(·), z⋆(·), u⋆(·)


is known as the

extremal lift of the optimal state-action trajectory

z⋆(·), u⋆(·)


.

The scalar η is known as the abnormal multiplier. If η = 1, then
the extremal t −→


η, p(t), z⋆(t), u⋆(t)


is said to be normal;

if η = 0, then the extremal is said to be abnormal. The scalar
η is a Lagrange multiplier associated to the instantaneous cost.
Interestingly, the curves for which η = 0 are not detected by the
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