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a b s t r a c t

We discuss the computational complexity and feasibility properties of scenario sampling techniques for
uncertain optimization programs. We propose an alternative way of dealing with a special class of stage-
wise coupled programs and compare it with existing methods in the literature in terms of feasibility and
computational complexity. We identify trade-offs between different methods depending on the problem
structure and the desired probability of constraint satisfaction. To illustrate our results, an example from
the area of approximate dynamic programming is considered.
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1. Introduction

One way of dealing with data uncertainty in robust optimiza-
tion is to allow the optimal decision to violate problem constraints
on a set of pre-specified measure. The authors in [1,2] provide ex-
plicit solutions to such problems under assumptions on the prob-
ability distribution of the uncertainty. To avoid such assumptions
one can make use of uncertainty samples and construct decisions
that only satisfy system constraints on the sampled uncertainty in-
stances. The scenario approach [3,4] can be used to provide feasi-
bility generalization statements for convex optimization problems,
i.e., how likely it is for a sample-based decision to satisfy the prob-
lem constraints for a new realization of the uncertainty that was
not included in the samples. Beyond feasibility guarantees, [5–7]
provide bounds on the amount of constraint violation and are con-
cerned with probabilistic performance issues.

We focus on scenario based convex optimization problems
using the scenario approach [3,4,8,9]. We illustrate that the same
guarantees on the feasibility of a scenario based solution may
be obtained by formulating alternative scenario programs, each
with a potentially different number of decision variables and
constraints and hence different computational complexity. We
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argue that in the case of multi-stage scenario programs, stage-
wise coupled via the constraint functions, it is often challenging to
decide which algorithm to use and illustrate how different choices
give rise to a significant trade-off in the total computation time.
Motivated by such cases, we provide a framework to compare
approaches in terms of computational complexity, while sharing
the same joint constraint feasibility properties. In this context,
our contributions are: (1) We show how the scenario approach
paradigm can be deployed in stage-wise coupled programs and
analyze the feasibility properties of the associated solutions
(Sections 3.3 and 3.4). (2) We illustrate how the violation and
confidence parameters can be treated as additional degrees of
freedom and be selected by means of a convex program in view
of reducing the computational complexity (Section 3.5). This is
fundamentally different to the existing literature where violation
and confidence levels are typically considered as fixed parameters
when computing sample size bounds. (3)We compare alternatives
with respect to computational complexity and identify underlying
trade-offs (Section 4). (4) We demonstrate the results on an
approximate dynamic programming (ADP) algorithm developed
for reachability problems (Section 5). Applications are not limited
to this algorithm since most ADP approaches based on [10] result
in a sequence of coupled scenario programs.

Section 2 presents the general problem under consideration
and Section 3 the different scenario based alternatives and their
properties. In Section 4we discuss the trade-off between feasibility
and computational complexity of each alternative while Section 5
illustrates our results with a numerical example in ADP.
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Let R, N, N+ denote the real, natural and positive natural num-
bers. Uncertainty samples are extracted from a possibly unknown
set ∆ according to a possibly unknown probability measure P. PS

with S ∈ N+ denotes the corresponding product measure. We use
i.i.d for identically and independently distributed. Operator | · | de-
notes the cardinality of its argument, dim(A) the dimension of a
linear space A, and x |= y that x satisfies statement y.

2. Programs with multiple robust constraints

Consider a compact convex set X ⊆ Rd, a possibly unbounded
uncertainty set ∆ ⊆ Rw , a convex cost function f : X → R
and a set of M ∈ N+ convex constraint functions gi : X × ∆ →

R, i = 1, . . . ,M . We deal with robust convex optimization prob-
lems (RCP) of the form:

RCP :


min
x∈X

f (x)

s.t gi (x, δ) ≤ 0, ∀δ ∈ ∆, ∀i ∈ {1, . . . ,M}.
(1)

The set ∆ may be infinite and possibly unbounded, rendering (1) a
convex, semi-infinite optimization program. A common approach
to approximate the solution is to impose the constraints on a fi-
nite number of uncertainty instances. Consider S ∈ N+ i.i.d sam-
ples {δj

}
S
j=1 extracted from ∆ according to some underlying prob-

ability distribution, and a collection {∆i}
M
i=1 of M subsets of {δj

}
S
j=1

such that for each δ ∈ {δj
}
S
j=1 there exists i so that δ ∈ ∆i, i.e., the

sets may be overlapping but each δ belongs in at least one of them.
The interpretation is that for each i = 1, . . . ,M , the corresponding
constraint gi(x, δ) should be satisfied for all δ ∈ ∆i, but not neces-
sarily for all δ ∈ ∆. Problem (1) is then approximated by a scenario
convex optimization program (SCP) of the form:

SCP[∆1, . . . , ∆M ] :


min
x∈X

f (x)

s.t gi (x, δ) ≤ 0, ∀δ ∈ ∆i,
∀i ∈ {1, . . . ,M}

(2)

and can be solved to optimality by various solvers. We impose the
following assumption on SCP[∆1, . . . , ∆M ]:

Assumption 1. For any set {δj
}
S
j=1 and collection of subsets {∆i}

M
i=1

with S,M ∈ N+, SCP[∆1, . . . , ∆M ] is feasible, its feasibility region
has a non-empty interior and its minimizer x∗

[∆1, . . . , ∆M ] :

∆S
→ X is unique.

We refer to [3,11] for details on how Assumption 1 can be
relaxed. Measurability of x∗

[∆1, . . . , ∆M ] is assumed as needed
[7,12]. Same as the standard literature on the scenario approach
[3,4] we focus on the feasibility properties of x∗ as a function of the
algorithm used to construct it; performance issues are discussed
in [6,7].

3. Feasibility of scenario convex programs

We introduce four different approaches to formulate the
SCP: the standard scenario approach, the multi-stage scenario
approach, the stage-wise coupled scenario approach using the
same samples at every step and the stage-wise coupled scenario
approach using different samples at every step. Due to differences
in the generation of samples, each approach provides different
design choices. In particular, whenever the constraints in the
SCP are sampled separately, additional degrees of freedom are
introduced, allowing to choose different feasibility properties for
each constraint. We compare all approaches on the same metric
of jointly satisfying all of the constraints in (2), and exploit their
structure to reduce computational complexity.

3.1. The standard scenario approach

Let ∆̄ = {δj
}
S
j=1 and assume that ∆1 = · · · = ∆M = ∆̄, i.e.,

enforce each constraint on all elements in ∆̄. Let dbe the dimension
of the decision space X and denote by SCP[∆̄], x∗

[∆̄] the resulting
instance of SCP[∆1, . . . , ∆M ] and its minimizer, respectively.
According to [4, Theorem 2.4], one can choose violation and
confidence levels ε, β ∈ (0, 1), sample

S ≥ S(ε, β, d) (3)

with S(ε, β, d) := min

N ∈ N

 d−1
i=0

N
i


εi(1 − ε)N−i

≤ β


points from the constraint set of (1) according to P and formulate
SCP[∆̄] where ∆1 = · · · = ∆M = ∆̄ are constructed using
the extracted samples. Under Assumption 1, the minimizer of the
resulting problem, x∗

[∆̄], satisfies

CCPε : P[∃i ∈ {1, . . . ,M}, gi(x∗
[∆̄], δ) > 0] ≤ ε (4)

with confidence (measured with respect to PS) at least 1 − β . The
final statement can be compactly written as PS

[x∗
[∆̄] |= CCPε] ≥

1−β . The computational complexity associated with constructing
x∗

[∆̄], along with its feasibility properties depend on the choice
of ε, β and the number of decision variables d that implicitly
affect the number of constraints (inspect (3)). Note that the result
remains unaffected if d in (3) is replaced by any upper bound
on the number of the so-called support constraints (see [3] for a
precise definition) other than the dimension of the decision space.
Refinements along this direction are discussed in [8,13,14] where
the authors present a tighter bound, defined as the constraint
support rank.

3.2. The multi-stage scenario approach

We impose additional structure on the RCP by assuming that for
any δ ∈ ∆ and each i = 1, . . . ,M , the constraint function gi(·, δ)
does not necessarily depend on all decision variables. The set-up is
then similar to the structure considered in [8], where the authors
studied optimization programs with multiple chance constraints.
For each i = 1, . . . ,M , let Xi ⊆ X denote the domain of each
gi(·, δ) and di = dim(Xi), where dim(Xi) denotes the dimension
of the smallest subspace of Rd containing Xi. We further assume
that di < d for at least one i = 1, . . . ,M to exclude the case where
all constraint functions depend on all decision variables; if this
is not the case the subsequent analysis reduces to the standard
scenario approach of Section 3.1. It was shown in [8, Theorem
4.1] that one can choose different violation and confidence levels
εi, βi ∈ (0, 1) for each i = 1, . . . ,M , extract

Si ≥

M
i=1

S(εi, βi, di) (5)

with

S(εi, βi, di) := min


N ∈ N

 di−1
j=0


N
j


ε
j
i(1 − εi)

N−j
≤ βi


samples i.i.d from ∆ according to a probability measure P,
construct {∆i}

M
i=1 as in Section 2 with |∆i| = Si and formulate

SCP[∆1, . . . , ∆M ]. Under Assumption 1, it holds that for each
i = 1, . . . ,M , the minimizer x∗

[∆1, . . . , ∆M ] of SCP[∆1, . . . , ∆M ]

satisfies the chance constraint,

CCPεi : P[gi

x∗

[∆1, . . . , ∆M ], δ


> 0] ≤ εi, (6)

with confidence (measured with respect to PSi ) at least 1 −

βi. As with the standard scenario approach in Section 3.1, each
di can be replaced by a tighter upper bound on the support



Download English Version:

https://daneshyari.com/en/article/7151694

Download Persian Version:

https://daneshyari.com/article/7151694

Daneshyari.com

https://daneshyari.com/en/article/7151694
https://daneshyari.com/article/7151694
https://daneshyari.com

