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a b s t r a c t

We solve stabilization problems for linear time-varying systems under input delays. We show how
changes of coordinates lead to systems with time invariant drifts, which are covered by the reduction
model method and which lead to the problem of stabilizing a time-varying system without delay. For
continuous time periodic systems, we can use Floquet theory to find the changes of coordinates. We also
prove an analogue for discrete time systems, through a discrete time extension of Floquet theory.
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1. Introduction

This note continues our search (begun in [1,2]) for extensions of
the classical reduction model method that cover time-varying sys-
temswith input delays. Input delays are commonwhen controllers
are remotely implemented; see [3–8] for more motivation. The re-
duction method has its origins in the works [9–11] by Artstein and
others, who focused on continuous time invariant linear systems.

Stabilization problems for linear time-varying systemswith de-
lays have been studied in fewer works. In most of them, time-
varying Lyapunov functions are needed; see for instance [12,13]
for the use of strict Lyapunov functions, and [14] for Razumikhin–
Lyapunov functions. One useful Lyapunov-based approach to de-
lay systems entails solving the stabilization problemwith the input
delay set equal to zero, and then using Lyapunov–Krasovskii func-
tionals to look for upper bounds on the input delays that the closed
loop system can tolerate without sacrificing the stability perfor-
mance; see [15,16]. Linear time-varying systems arise in the con-
text of the local stabilization of a trajectory of a nonlinear system,
but are beyond the scope of the classical reduction model method.
The main differences between reduction approaches and the Lya-
punov–Krasovskii functional approaches such as those in [16] are
that (a) under certain delay bounds, methods such as [16] lead
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to relatively simple controllers that do not require the distributed
terms that are used in reduction model methods and (b) reduction
model methods usually make it possible to compensate for arbi-
trarily long input delays, by using the delay value in the dynamic
feedback control design.

Our work [2] extends the reduction model method to linear
time-varying systems, using two approaches. One approach in [2]
leads to a control formula that involves the fundamental matrix
for the corresponding uncontrolled system (i.e., the time-varying
system obtained from the original system by setting the input
equal to zero in the original system), and so may be difficult to
apply in practice. The other control design in [2] does not require
a formula for the fundamental matrix, but requires that the input
delay stay below a suitable constant bound. By contrast, [1] covers
time-varying nonlinear systems whose nonlinear parts satisfy
certain conditions, and then builds a reduction model control for
the linearization of the system.

One natural research direction for addressing the challenges
of extending the reduction model method to time-varying linear
systems, and for analogous problems for discrete time systems,
is to seek analogues of Floquet’s theory; see [17, Section 3.5].
Floquet’s theory covers systems without controls. One of its basic
results is that if a time-varying linear system is periodic, then it
can be transformed into a time invariant system through a periodic
change of coordinates. This suggests the possibility of using Floquet
theory to transform a time-varying linear control system into a
new time-varying linear control system with a time invariant
draft, and stabilizing the new system by the reduction approach.
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One key observation in this work is that such a transformation
can be done under periodicity of the coefficient matrices in the
system, and that this simplifies the stabilization problem to one
that involves globally asymptotically stabilizing systems with no
delay. Our assumptions are novel. We also provide analogues for
nonperiodic or discrete time systems.

Discrete time systems with delay are important because they
can be used to model some engineering devices; see [18–21].
However, not many contributions are concerned with time-
varying discrete time systems with delay. Our discrete time
delayed systems in this work have the form

xk+1 = Akxk + Bkuk−r (1)

where xk ∈ Rn is the state, uk ∈ Rp is the control, and r ∈ N is
the delay. Here and in the sequel, the dimensions and delays are
arbitrary. For the case of time invariant coefficients, the work [19]
uses dynamic extensions to transform (1) into systems with no
delay, in the special case of networked control systems. There
are other stabilization results for communication systems that are
based on state augmentation; see, e.g., [22,23] for results for time
invariant systems based on linear matrix inequalities. See also [24]
for a prediction based approach for (1) in the time invariant case.
For time-varying continuous time systems with delay in the input,
the reduction model approach can be applied under conditions
pertaining to the speed of variation of the time-varying matrices;
see [2]. However, to the best of our knowledge, no discrete time
version of [2] exists. Also, [25] is concerned with time invariant
systems.

We propose a rather general solution to the problem of expo-
nential stabilization of (1) through the reduction model approach,
including cases where the coefficient matrices are not necessarily
periodic, with an arbitrarily large delay r . It decomposes into two
steps. First, under reasonable assumptions, we transform (1) into
a system that is autonomous when the control is set equal to zero.
Then, we adapt the reduction method to the resulting dynamics,
using a novel discrete time analogue of an operator that is used
in the predictor based analysis in [25]. Our treatment of (1) also
has implications for using reduction model controllers in continu-
ous time systems, because in practice, implementing controllers in
continuous time systems uses discretizations, leading to discrete
time delay systems of the form (1). We illustrate our theory in two
examples, including a discrete time linear system in which the co-
efficient matrices are not periodic.

2. Preliminary results in continuous time

We use the following notation and definitions. Let | · | be the
usual Euclidean norm of matrices and vectors, In be the n × n
identity matrix, and N = {1, 2, . . .}. For any function φ : S → Rp

that is defined on any subset S of a Euclidean space, we use |φ|J to
denote its supremum over any set J ⊆ S. We often leave out the
arguments of functions, when they are clear, and for matrix valued
functions E such that E(t) is invertible for all t in the domain of E,
weuse E−1(t) tomean thematrix inverse of thematrix E(t) for all t .

2.1. Fundamental general result

Consider the system

ẋ = A(t)x + F(t)u(t − τ) (2)

where the state x and the input u are valued in Rn and Rp

respectively, the functions A : R → Rn×n and F : R → Rn×p are
continuous, and τ > 0 is any positive constant delay.We introduce
the following assumption. See below forways to build the required
function P .

Assumption 1. There exist a constant matrix Ac ∈ Rn×n, a C1

function P : R → Rn×n such that P−1(t) is defined for all t , and
a constant pM > 0 such that

|P(t)| + |P−1(t)| ≤ pM (3)

and

Ṗ(t) = AcP(t) − P(t)A(t) (4)

hold for all t ≥ 0.

The intuition between Assumption 1 is that it encompasses key
properties that hold for the special case of time invariant systems
ẋ = Mx+Fu(t−τ) and that wewill use to transform (2) into a new
system that is time invariant when the input is 0; see Remark 1.
For time invariant cases, we can satisfy Assumption 1 using the
identity matrix P(t) = In and Ac = M . In Section 2.2, we give
general ways to satisfy Assumption 1 for time varying systems.We
use the following key observations:

Lemma 1. Assume that the system (2) satisfies Assumption 1. Then
the time-varying change of coordinates

z = P(t)x (5)

transforms (2) into

ż(t) = Acz(t) + P(t)F(t)u(t − τ). (6)

Also, the operator

Z(t) = z(t) +

 t

t−τ

eAc (t−m−τ)P(m + τ)F(m + τ)u(m)dm (7)

transforms (6) into the system

Ż(t) = AcZ(t) + e−AcτP(t + τ)F(t + τ)u(t) (8)

with the state variable Z.

Proof. Our choice (5) of z gives ż(t) = Ṗ(t)x(t) + P(t)ẋ(t) =

Ṗ(t)x(t) + P(t)[A(t)x(t) + F(t)u(t − τ)]. Then (6) follows from
(4) and our choice of z. Also, the time derivative of (7) along all
solutions of (6) is

Ż(t) = Acz(t) + P(t)F(t)u(t − τ)

+ Ac

 t

t−τ

eAc (t−m−τ)P(m + τ)F(m + τ)u(m)dm

+ e−AcτP(t + τ)F(t + τ)u(t) − P(t)F(t)u(t − τ)

= AcZ(t) + e−AcτP(t + τ)F(t + τ)u(t) (9)

which gives the second conclusion. �

Lemma 1 implies that if one knows a function P that leads to
a time invariant system when the input is zero, then in practice,
we can use the reduction model approach to obtain a new system
without delays.

Remark 1. Before discussing ways to find P , we remark that
similar reasoning applies to systems

ẋ = A(t)x +

 t

t−τ

F(ℓ)u(ℓ)dℓ (10)

with distributed delay in the input and continuous matrix valued
functions A and F . To see how, notice that if Assumption 1 is
satisfied, and if we define z by (5) as before and redefine Z to be

Z(t) = z(t) +

 t

t−τ

eAc (t−m−τ)P(m + τ)

×

 t

m
F(ℓ)u(ℓ)dℓ


dm, (11)



Download English Version:

https://daneshyari.com/en/article/7151695

Download Persian Version:

https://daneshyari.com/article/7151695

Daneshyari.com

https://daneshyari.com/en/article/7151695
https://daneshyari.com/article/7151695
https://daneshyari.com

