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a b s t r a c t

This paper deals with the stabilization and the practical stabilization of nonlinear systems described by
neutral functional differential equations in Hale’s form, affine in the control input. Artstein’smethodology
and Sontag’s universal formula are investigated for this class of systems, by means of invariantly
differentiable control Lyapunov–Krasovskii functionals.
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1. Introduction

Neutral functional differential equations in Hale’s form (see
[1,2]) describe many systems in electrical engineering (lossless
transmission lines, partial element equivalent circuits, see [3,1,2,4]
and references therein), mechanical engineering (hydraulic sys-
tems, see [4] and references therein), bioengineering (see [5] and
references therein), and often provide an alternative description
of systems described by hyperbolic partial differential equations
(see [6] and references therein). Stabilization and control problems
for classes of nonlinear systems described by neutral functional
differential equations have been extensively treated (see, for in-
stance, [7–12,5,13–16]). On the other hand, the stabilization ap-
proach based on the Artstein–Sontag Control Lyapunov Functions
methodology (see [17,18]), to my knowledge, has been never in-
vestigated in the literature for systems described by neutral func-
tional differential equations. As well known, the Control Lyapunov
Functions (or Functionals) methodology has revealed to be a pow-
erful and very general tool in nonlinear control of finite and also
infinite dimensional systems including systems described by re-
tarded functional differential equations (see [19–25] and refer-
ences therein). It is easy to believe that this approach can play a
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key role in the stabilization theory for systems described by non-
linear neutral functional differential equations as well.

This paper aims to explore the Artstein–Sontag methodology
for systems described by nonlinear neutral functional differential
equations in Hale’s form, affine in the control input, with
an arbitrary number of discrete time-delays of arbitrary size.
Partially distributed delay terms are also allowed. Two kinds of
results are provided. First, Sontag’s universal formula for neutral
systems and the related small-control property are properly re-
formulated by means of new defined invariantly differentiable
control Lyapunov–Krasovskii functionals (see [26,27]). It is shown
that the resulting feedback control law is locally Lipschitz away
from zero and continuous at zero, and yields global asymptotic
stability of the trivial solution. This technique of Sontag’s universal
formula obtained by invariantly differentiable functionals, without
any approximation, is not shown in [24], not even for systems
described by retarded functional differential equations. The
hypotheses needed for achieving a continuous global stabilizer
by Sontag’s formula and invariantly differentiable functionals are
given, and it is shown by a counter-example that these hypotheses
in general cannot be weakened for achieving this task (see
Remark 10, where a comparisonwith other hypotheses introduced
in [20–22,25], for systems described by retarded functional
differential equations, is also provided). Sontag’s universal formula
and the small control property for systems described by neutral
functional differential equations (which include as special case
the class of systems described by retarded functional differential
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equations) are here provided in a form very similar to the one
in the literature for systems described by ordinary differential
equations. Second, a practically stabilizing controller for systems
described by neutral functional differential equations is proposed
by a modification of Sontag’s universal stabilizer, as shown in [24]
for nonlinear retarded systems. The feedback control law is locally
Lipschitz, and in this case, the small-control property is not
required. Instead, another condition is required to be verified
(see point (iv) in Hypothesis 18). The price to pay is that only
practical stability is guaranteed. On the other hand, the final target
neighborhood of the origin can be arbitrarily small. An example
is studied in details, showing the efficacy of the above modified
Sontag’s stabilizer.

In general, the extension of results from systems described by
retarded functional differential equations to systems described by
neutral functional differential equations has to be carefully man-
aged, and devoted literature is necessary. For instance, in our case,
it is necessary to introduce a new definition of invariantly differ-
entiable functionals. As well, many of the results provided here ex-
ploit suitably the input-to-state stability property of the nonlinear
difference operator, which is not present in systems described by
retarded functional differential equations. Throughout the paper,
for reader’s convenience, differences between the two classes of
systems and related methodologies are highlighted.

The paper is organized as follows. In Section 2, the definition of
invariantly differentiable functionals (given in [26,27] for systems
described by retarded functional differential equations) is given for
systems described by neutral functional differential equations in
Hale’s form. In Section 3, standard Sontag’s stabilizer, built up by
the use of invariantly differentiable functionals, is investigated. In
Section 4, an approximated Sontag’s stabilizer is proposed, for the
case that the small-control property is not satisfied, providing a
new chance for stabilization, but of the practical type. In Section 5
an example is provided. In Section 6 conclusions are drawn.

A preliminary version of this paper has been published in [28].
Notations

R denotes the set of real numbers, R⋆ denotes the extended
real line [−∞,+∞], R+ denotes the set of non negative reals
[0,+∞). The symbol | · | stands for the Euclidean norm of a real
vector, or the induced Euclidean norm of a matrix. For a positive
integer n, for a positive real ∆ (maximum involved time-delay),
C and Q denote the space of the continuous functions mapping
[−∆, 0] into Rn and the space of the continuous functionsmapping
[−∆, 0) into Rn, admitting finite left-hand limit at 0, respectively.
The supremum norm of a function in C, or in Q, is indicated with
the symbol ∥ · ∥∞. For φ ∈ C, φ− is the function in Q defined as
φ−(τ ) = φ(τ), τ ∈ [−∆, 0). For a function x : [−∆, c) → Rn,
with 0 < c ≤ +∞, for any real t ∈ [0, c): xt is the function in C
defined as xt(τ ) = x(t + τ), τ ∈ [−∆, 0]; xt− is the function in Q
defined as xt−(τ ) = xt(τ ), τ ∈ [−∆, 0). For a positive real δ, φ ∈

C,Cδ(φ) = {ψ ∈ C : ∥ψ − φ∥∞ ≤ δ}. For a positive real δ, x ∈

Rn, Bδ(x) = {y ∈ Rn
: |y− x| ≤ δ}. Let us here recall that a function

γ : R+
→ R+ is: of class P if it is continuous, zero at zero, and

positive at any positive real; of classK if it is of classP and strictly
increasing; of class K∞ if it is of class K and it is unbounded; of
class L if it is continuous and it monotonically decreases to zero as
its argument tends to+∞. A function β : R+

×R+
→ R+ is of class

KL if β(·, t) is of classK for each t ≥ 0 and β(s, ·) is of classL for
each s ≥ 0. A function f : Rn

×Q → Rn is said to be independent of
the second argument at 0, if there exists a positive real δ ∈ (0,∆)
such that for any x ∈ Rn, for any φi ∈ Q, i = 1, 2, satisfying
φ1(τ ) = φ2(τ ), τ ∈ [−∆,−δ], the equality holds f (x, φ1) =

f (x, φ2) (see Definition 5.1, p. 281, in [1,29]). The symbols ∪ and
◦ denote union of sets and composition of functions, respectively.
In next sections, ODE stands for ordinary differential equation,
RFDE stands for retarded functional differential equation, FDE

stands for functional difference equation, NFDE stands for neutral
functional differential equation, GAS stands for global asymptotic
stability or globally asymptotically stable, ISS stands for input-
to-state stability or input-to-state stable, CLKF stands for control
Lyapunov–Krasovskii functional. We recall that: a system is said to
be 0-GAS if the origin is an equilibrium point and the null solution
is GAS (see [30], here the origin is considered as zero-invariant set);
a map f : C → Rn is said to be completely continuous if it is
continuous and it takes closed bounded sets inC into bounded sets
of Rn (see [1, Theorem 3.2, pp. 46]).

2. Invariantly differentiable functionals for NFDEs

Let us consider a system described by the following NFDE in
Hale’s form (see [1,29])
d
dt

Dxt = f (x(t), xt−)+ g(x(t), xt−)u(t), t ≥ 0,

x(τ ) = x0(τ ), τ ∈ [−∆, 0], x0 ∈ C, (1)
where: x(t) ∈ Rn, n is a positive integer; ∆ > 0 is the maximum
involved time-delay; the maps f : Rn

×Q → Rn and g : Rn
×Q →

Rn×m are Lipschitz on bounded subsets of Rn
× Q and independent

of the second argument at 0;m is a positive integer;u(t) ∈ Rm is the
input signal, Lebesguemeasurable and locally essentially bounded;
D : C → R is a map defined as follows, for φ ∈ C,
Dφ = φ(0)− q(φ−), (2)
where the map q : Q → Rn is Lipschitz on bounded subsets of Q,
independent of the argument at 0. We assume f (0, 0) = 0 and the
existence of a function L of class K∞ such that
|q(φ)| ≤ L(∥φ∥∞), ∀ φ ∈ Q. (3)
Moreover, we introduce the following assumption (not involved
for systems described by RFDEs).

Assumption 1. There exist functions β̃ of class KL and γ̃ of class
K such that, for the solution of the system described by the FDE

Dξt = w(t), t ≥ 0,
ξ(τ ) = ξ0(τ ), τ ∈ [−∆, 0], ξ0 ∈ C, (4)

with ξ(t) ∈ Rn, w(t) a continuous input signal, the inequality
holds

∥ξt∥∞ ≤ β̃(∥ξ0∥∞, t)+ γ̃


sup
τ∈[0,t]

|w(τ)|


(5)

(that is, the system described by the FDE (4) is ISS, see [31–33]).

Remark 2. If, in (2), q(φ−) ≡ 0, φ ∈ C (i.e., Dφ = φ(0)), then (1)
reduces to a RFDE.

The definition of invariant differentiable functionals is given
in [26,27] for systems described by RFDEs (see Definitions 2.2.1,
2.5.2 in Chapter 2 in [27]). The formalism used in [27] is here
slightly modified for the purpose of formalism uniformity over the
paper. We make suitable modifications to the Definitions in [27],
in order to cope with systems described by NFDEs. In forthcoming
Remark 4 a discussion is provided about differences between the
definition here given for NFDEs and the one given in [27] for RFDEs.
For any given y ∈ Rn, φ ∈ Q and for any given continuous function
Y : [−2∆,−∆] ∪ [0,∆] → Rn with Y(0) = y,Y(−∆) = φ(−∆),
let ψ (y,φ,Y)

h ∈ Q, h ∈ (−∆,∆), be defined as:

ψ
(y,φ,Y)
0 = φ;

for h > 0, ψ
(y,φ,Y)
h (s) =


φ(s + h), s ∈ [−∆,−h),

Y(s + h), s ∈ [−h, 0)

for h < 0, ψ
(y,φ,Y)
h (s) =


φ(s + h), s ∈ [−∆− h, 0),

Y(s + h), s ∈ [−∆,−∆− h). (6)
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