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1. Introduction

Synchronization has been recently a popular subject in the
systems control community. This interest is motivated by the
large array of phenomena exhibiting synchronization properties in
physics and biology [ 1]. Moreover, distributed problems arising in
engineering applications, are commonly addressed in the context
of synchronization theory [2-5].

We consider N identical linear time-invariant (LTI) systems P =
(A,B,C)

X; = Ax; + Bu;,

(1)
yi = Cx;,

wherex; € R, u; € R™",y; € R, i = 1,...,N,N > 1. The
collection of systems (1) is denoted by PV. The systems are coupled
according to the following feedback

N
Ll,':KZO’,‘J(y]‘—y,‘), i=1,...,N, (2)

=1

where K € R™*4, The problem of static output-feedback synchro-
nization is to determine a matrix gain K and an interconnection
topology, defined by the coefficients o;; € R, such that the so-
lutions of (1), (2) asymptotically synchronize, i.e. lim;_, o, (x; (t) —
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x;(t)) = 0 for every i, j and every initial conditions. Both existence
and design questions are of interest. In this paper we will ad-
dress the existence question: determine under what conditions
on (1), a matrix K and a communication topology o;; exist such
that the solutions of (1), (2) synchronize. We will call this property
static output-feedback synchronizability or, for short, synchronizabil-
ity. The design problem is subject of ongoing research.

The output-feedback synchronization problem has been ad-
dressed in [6] by assuming that B is the identity matrix and in [7]
by assuming that C is the identity matrix. Both scenarios are partic-
ular cases of the general framework considered in this paper. In [8]
the synchronization problem is addressed by assuming that the
columns of B are contained in the image of CT. Finally, a number
of publications, see e.g., [9,10], study synchronization for specific
systems such as double integrators and harmonic oscillators.

As for the output-feedback stabilization problem, the limita-
tions imposed by static output-feedback can be overcome by using
dynamic controllers. In [11] and [12] it has been shown that, as-
suming that the interconnection topology satisfies a minimal con-
nectivity requirement, stabilizability and detectability of the iso-
lated systems is sufficient for the existence of a dynamic controller
synchronizing the network. In [ 11] the solution has been proposed
in the case of time-varying communication topologies. Finally, [ 13]
addressed the synchronization problem when the systems com-
posing the network are not identical.

As shown in this paper, stabilizability and detectability are not
sufficient for synchronizability. We first show that the synchro-
nization problem can be addressed by studying the so called syn-
chronization region (which depends on the structural properties of
the uncoupled systems and the controller gain K) and the location
of the eigenvalues of the interconnection matrix (which must be lo-
cated inside the synchronization region in order for the network to
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synchronize). A connection between synchronizability and output-
feedback stabilizability is established. It is shown that, somehow
surprisingly, output-feedback stabilizability of the systems com-
posing the networKk is a sufficient but not necessary condition for
synchronizability. The notion of synchronization region and the
synchronization criterion are then used to derive a graphical test
to check synchronizability in networks of SISO systems.

The paper is organized as follows. Section 2 introduces the
notation used throughout the paper and reviews preliminary
material. Section 3 formalizes the synchronization problem.
Sections 3 and 4 present the main results of the paper. We conclude
the paper by illustrating the theory with some examples and
with some final remarks. Preliminary results related to this paper
appeared in [ 14].

2. Preliminaries
2.1. Notations

The following notations will be used throughout the paper. We
denote the open right (left) half complex plane by C.( (C.g), and
the closed right (left) half complex plane by C-( (C<p). We denote
by 1, the column vector in C" containing 1 in each entry. Given
a complex matrix M € C™™, M" denotes its transpose and M*
its conjugate transpose. Given a square matrix M € C™", o {M}
denotes its spectrum (defined as the multiset of the eigenvalues
of M). The matrix M is called Hurwitz if c {M} C C_o. We write
M > 0(M > 0) to indicate that M is positive-definite (positive-
semidefinite). The identity matrix in C"*" is denoted by I,,.

2.2. Graph theory

A directed graph § consists of the triple (V, &, X'), where V =
{1,2, ..., N}istheset of nodes, & C V x 'V is the set of edges and
¥ € RV is a weighted adjacency matrix. Each element o; (an
element of X') is nonzero if and only if (i, j) € & When (i,)) € &,
node j is called a neighbor of node i. We assume that there are no
self-loops and therefore 0;; = 0 fori = 1...N. Unless differently
stated, we allow for negative weights o;;. The set of graphs with
the properties above is denoted by N. Two subsets of " are given
special notations: 9’1 is the subset of graphs with non-negative
weights (o;; > 0); while g’j is the subset of graphs characterized

by symmetric matrices . Given a graph G € ¢~ a path between
two nodes ny, n; is a sequence of nodes {ny, n,, ..., m} such that
n, niy1isanedge fori =1, ..., — 1. Anode ny is called reachable
from a node n, if there exists a path between n, and n,. A node is
globally reachable if it is reachable from every other node. Given a
graph § € gV, we define the interconnection matrix Lg as the N x N
matrix with elements

N
oik, 1=1],
[Loliy = ;“k g (3)
—O,',j, 17&]

The matrix Lg always contains 0 and 1y as an eigenvalue-
eigenvector pair (since Lg has zero row sum). Lg has special
properties when the graph G belongs to 9’1 or gﬁ’ . For graphs in
92’ , Ls is a symmetric matrix and has therefore real eigenvalues.
For graphs in g, the associated interconnection matrix Lg is
called Laplacian matrix, and it is the generalization of the standard
Laplacian matrix defined for undirected graphs (see e.g., [15] and
references therein). All the eigenvalues of a Laplacian matrix have
non-negative real part and the (always present) zero eigenvalue
has multiplicity one if and only if the graph contains a globally

reachable node [16]. Let Qy be a matrix belonging to RN =D*N and
satisfying the following properties

Qnvly =0, QvQv = Iy, QvQy = In—1, (4)

where ITy == Iy — %INIL is the projector onto the subspace or-
thogonal to span(1y). Given a graph §, the reduced interconnection
matrix is defined by

ZS = QNLgQKJ- (5)

where Qy € RN~D*N and satisfies the properties (4). The spec-
trum of Lg is the spectrum of Ls with one instance of the zero eigen-
value removed, i.e. o{Ls} = o{Ls} \ {0} [17]. Therefore, when
S g’i contains a globally reachable node, U{ig} C C.p. These
properties are invariant to the choice of Qy [17].

3. Synchronization criterion and synchronizability

We represent the network coupling structure with a directed
graph. For this purpose we introduce N nodes labeled consecu-
tively from 1 to N. Each node represents a system in the network. If
acoefficient o;; = 0 then the edge connecting node i to nodej is not
present. If ;; # 0 the relative edge exists and its weight is deter-
mined by the (possibly negative) coefficient o; ;. We call the result-
ing graph G the communication topology. A collection of systems (1)
together with a feedback matrix K € R™*? and a communication
topology G form a network that will be denoted by N := (P, K, ).
The next definition formalizes the notion of network synchroniza-
tion.

Definition 1. A network N = (PV, K, 9), is said to synchronize if
lim (x;(t) — x;(¢)) =0,

t—00

fori,j = 1,2, ..., N and for all initial conditions.

Network synchronization depends on the structural properties
of the system P, on the graph § and on the choice of the matrix
K € R™*4,In this paper we investigate the structural properties of
P such that (PV, K, §) synchronizes for some K and .

Definition 2 (Synchronizability). A collection of systems PN is
output-feedback synchronizable (OFS) if there exist a matrix K €
R™4 and a graph § e ¢ such that the network (PV,K,S)
synchronizes.

We will make use of the following notion of synchronization region.

Definition 3. Givenasystem? = (A, B, C) and amatrix K € R™*9,
the synchronization region 45 (K) is the subset of the complex plane
defined by

85(K) == {s € C|A — sBKC is Hurwitz}. (6)

The term synchronization region is justified by the synchroniza-
tion criterion presented below.

Theorem 1. A network N = (PN, K, §) synchronizes if and only if
o{Ls} S 8(K).

Proof. Define x = [x], ...
form as

%= (Iy ® A — Lg ® BKC)x.

,xy,]" and rewrite (1), (2) in compact

Let X = {x € R™ ] (ITy ® I,) x = 0} be the synchronization
subspace and X, := {x € R"™ | (4 1y1§ ® I,) x = 0} its orthogo-
nal complement, called the transversal subspace. The network syn-
chronizes if and only if, for any initial conditions, the projection of
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