
Systems & Control Letters 94 (2016) 152–158

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Output-feedback synchronizability of linear time-invariant systems✩

Tian Xia ∗, Luca Scardovi
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada

a r t i c l e i n f o

Article history:
Received 9 December 2015
Received in revised form
5 June 2016
Accepted 13 June 2016

Keywords:
Synchronization
Linear systems
Output-feedback

a b s t r a c t

The paper studies the output-feedback synchronization problem for a network of identical, linear time-
invariant systems. A criterion to test network synchronization is derived and the class of output-
feedback synchronizable systems is introduced and characterized by sufficient and necessary conditions.
In particular it is observed that output-feedback stabilizability is sufficient but not necessary for output-
feedback synchronizability. In the special case of single-input single-output systems, conditions are
derived in the frequency domain. The theory is illustrated with several examples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization has been recently a popular subject in the
systems control community. This interest is motivated by the
large array of phenomena exhibiting synchronization properties in
physics and biology [1]. Moreover, distributed problems arising in
engineering applications, are commonly addressed in the context
of synchronization theory [2–5].

We considerN identical linear time-invariant (LTI) systemsP =

(A, B, C)

ẋi = Axi + Bui,

yi = Cxi,
(1)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rq, i = 1, . . . ,N , N > 1. The
collection of systems (1) is denoted by PN . The systems are coupled
according to the following feedback

ui = K
N
j=1

σi,j(yj − yi), i = 1, . . . ,N, (2)

where K ∈ Rm×q. The problem of static output-feedback synchro-
nization is to determine a matrix gain K and an interconnection
topology, defined by the coefficients σi,j ∈ R, such that the so-
lutions of (1), (2) asymptotically synchronize, i.e. limt→∞(xi(t) −
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xj(t)) = 0 for every i, j and every initial conditions. Both existence
and design questions are of interest. In this paper we will ad-
dress the existence question: determine under what conditions
on (1), a matrix K and a communication topology σi,j exist such
that the solutions of (1), (2) synchronize. Wewill call this property
static output-feedback synchronizability or, for short, synchronizabil-
ity. The design problem is subject of ongoing research.

The output-feedback synchronization problem has been ad-
dressed in [6] by assuming that B is the identity matrix and in [7]
by assuming that C is the identitymatrix. Both scenarios are partic-
ular cases of the general framework considered in this paper. In [8]
the synchronization problem is addressed by assuming that the
columns of B are contained in the image of CT . Finally, a number
of publications, see e.g., [9,10], study synchronization for specific
systems such as double integrators and harmonic oscillators.

As for the output-feedback stabilization problem, the limita-
tions imposed by static output-feedback can be overcome by using
dynamic controllers. In [11] and [12] it has been shown that, as-
suming that the interconnection topology satisfies a minimal con-
nectivity requirement, stabilizability and detectability of the iso-
lated systems is sufficient for the existence of a dynamic controller
synchronizing the network. In [11] the solution has been proposed
in the case of time-varying communication topologies. Finally, [13]
addressed the synchronization problem when the systems com-
posing the network are not identical.

As shown in this paper, stabilizability and detectability are not
sufficient for synchronizability. We first show that the synchro-
nization problem can be addressed by studying the so called syn-
chronization region (which depends on the structural properties of
the uncoupled systems and the controller gain K ) and the location
of the eigenvalues of the interconnectionmatrix (whichmust be lo-
cated inside the synchronization region in order for the network to
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synchronize). A connection between synchronizability and output-
feedback stabilizability is established. It is shown that, somehow
surprisingly, output-feedback stabilizability of the systems com-
posing the network is a sufficient but not necessary condition for
synchronizability. The notion of synchronization region and the
synchronization criterion are then used to derive a graphical test
to check synchronizability in networks of SISO systems.

The paper is organized as follows. Section 2 introduces the
notation used throughout the paper and reviews preliminary
material. Section 3 formalizes the synchronization problem.
Sections 3 and 4 present themain results of the paper.We conclude
the paper by illustrating the theory with some examples and
with some final remarks. Preliminary results related to this paper
appeared in [14].

2. Preliminaries

2.1. Notations

The following notations will be used throughout the paper. We
denote the open right (left) half complex plane by C>0 (C<0), and
the closed right (left) half complex plane by C≥0 (C≤0). We denote
by 1n the column vector in Cn containing 1 in each entry. Given
a complex matrix M ∈ Cn×m, MT denotes its transpose and M∗

its conjugate transpose. Given a square matrix M ∈ Cn×n, σ {M}

denotes its spectrum (defined as the multiset of the eigenvalues
of M). The matrix M is called Hurwitz if σ {M} ⊆ C<0. We write
M > 0 (M ≥ 0) to indicate that M is positive-definite (positive-
semidefinite). The identity matrix in Cn×n is denoted by In.

2.2. Graph theory

A directed graph G consists of the triple (V, E, Σ), where V =

{1, 2, . . . ,N} is the set of nodes, E ⊆ V ×V is the set of edges and
Σ ∈ RN×N is a weighted adjacency matrix. Each element σi,j (an
element of Σ) is nonzero if and only if (i, j) ∈ E . When (i, j) ∈ E ,
node j is called a neighbor of node i. We assume that there are no
self-loops and therefore σi,i = 0 for i = 1 . . .N . Unless differently
stated, we allow for negative weights σi,j. The set of graphs with
the properties above is denoted by GN . Two subsets of GN are given
special notations: GN

+
is the subset of graphs with non-negative

weights (σi,j ≥ 0); while GN
u is the subset of graphs characterized

by symmetric matrices Σ . Given a graph G ∈ GN
+
, a path between

two nodes n1, nl is a sequence of nodes {n1, n2, . . . , nl} such that
ni, ni+1 is an edge for i = 1, . . . , l− 1. A node nb is called reachable
from a node na if there exists a path between na and nb. A node is
globally reachable if it is reachable from every other node. Given a
graph G ∈ GN , we define the interconnection matrix LG as the N ×N
matrix with elements

[LG]i,j :=


N

k=1

σi,k, i = j,

−σi,j, i ≠ j.

(3)

The matrix LG always contains 0 and 1N as an eigenvalue–
eigenvector pair (since LG has zero row sum). LG has special
properties when the graph G belongs to GN

+
or GN

u . For graphs in
GN
u , LG is a symmetric matrix and has therefore real eigenvalues.

For graphs in GN
+
, the associated interconnection matrix LG is

called Laplacian matrix, and it is the generalization of the standard
Laplacian matrix defined for undirected graphs (see e.g., [15] and
references therein). All the eigenvalues of a Laplacian matrix have
non-negative real part and the (always present) zero eigenvalue
has multiplicity one if and only if the graph contains a globally

reachable node [16]. Let QN be a matrix belonging to R(N−1)×N and
satisfying the following properties

QN1N = 0, Q T
NQN = ΠN , QNQ T

N = IN−1, (4)

where ΠN := IN −
1
N 1N1T

N is the projector onto the subspace or-
thogonal to span(1N). Given a graph G, the reduced interconnection
matrix is defined by

L̃G := QNLGQ T
N (5)

where QN ∈ R(N−1)×N and satisfies the properties (4). The spec-
trumof L̃G is the spectrumof LG with one instance of the zero eigen-
value removed, i.e. σ {L̃G} = σ {LG} \ {0} [17]. Therefore, when
G ∈ GN

+
contains a globally reachable node, σ {L̃G} ⊂ C>0. These

properties are invariant to the choice of QN [17].

3. Synchronization criterion and synchronizability

We represent the network coupling structure with a directed
graph. For this purpose we introduce N nodes labeled consecu-
tively from 1 toN . Each node represents a system in the network. If
a coefficientσi,j = 0 then the edge connecting node i to node j is not
present. If σi,j ≠ 0 the relative edge exists and its weight is deter-
mined by the (possibly negative) coefficient σi,j. We call the result-
ing graph G the communication topology. A collection of systems (1)
together with a feedback matrix K ∈ Rm×q and a communication
topology G form a network that will be denoted by N := (PN , K , G).
The next definition formalizes the notion of network synchroniza-
tion.

Definition 1. A network N = (PN , K , G), is said to synchronize if

lim
t→∞

(xi(t) − xj(t)) = 0,

for i, j = 1, 2, . . . ,N and for all initial conditions.

Network synchronization depends on the structural properties
of the system P, on the graph G and on the choice of the matrix
K ∈ Rm×q. In this paper we investigate the structural properties of
P such that (PN , K , G) synchronizes for some K and G.

Definition 2 (Synchronizability). A collection of systems PN is
output-feedback synchronizable (OFS) if there exist a matrix K ∈

Rm×q and a graph G ∈ GN such that the network (PN , K , G)
synchronizes.

Wewill make use of the following notion of synchronization region.

Definition 3. Given a systemP = (A, B, C) and amatrixK ∈ Rm×q,
the synchronization region SP(K) is the subset of the complex plane
defined by

SP(K) :=

s ∈ C

 A − sBKC is Hurwitz

. (6)

The term synchronization region is justified by the synchroniza-
tion criterion presented below.

Theorem 1. A network N = (PN , K , G) synchronizes if and only if
σ {L̃G} ⊆ SP(K).

Proof. Define x = [xT1, . . . , x
T
N ]

T and rewrite (1), (2) in compact
form as

ẋ = (IN ⊗ A − LG ⊗ BKC)x.

Let X∥ := {x ∈ RnN
 (ΠN ⊗ In) x = 0} be the synchronization

subspace and X⊥ := {x ∈ RnN
  1

N 1N1T
N ⊗ In


x = 0} its orthogo-

nal complement, called the transversal subspace. The network syn-
chronizes if and only if, for any initial conditions, the projection of
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