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This paper aims at characterizing the most destabilizing switching law for discrete-time switched systems
governed by a set of bounded linear operators. The switched system is embedded in a special class of
discrete-time bilinear control systems. This allows us to apply the variational approach to the bilinear
control system associated with a Mayer-type optimal control problem, and a second-order necessary
optimality condition is derived. Optimal equivalence between the bilinear system and the switched
system is analyzed, which shows that any optimal control law can be equivalently expressed as a
switching law. This specific switching law is most unstable for the switched system, and thus can be used
to determine stability under arbitrary switching. Based on the second-order moment of the state, the
proposed approach is applied to analyze uniform mean-square stability of discrete-time switched linear
stochastic systems. Numerical simulations are presented to verify the usefulness of the theoretic results.
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1. Introduction

The motivation for the study of switched systems has its roots
in industry for two aspects in general. On one hand, many physical
systems encountered in practice exhibit switching among a set
of subsystems depending on various environmental factors; see
e.g., [1] for more details. On the other hand, switched multi-
controller systems have numerous applications in the control of
mechanical systems, process control, automotive industry, and
many other fields [2]. Analysis and synthesis of a switched system
have attracted much attention from control community, and
fruitful achievements have been developed; see [3-8], and the
references therein.

A common problem for a switched linear system is that of
determining whether it is stable under arbitrary switching. Much
effort has been made to approach this problem, resulting in vari-
ous methods and tools; see the recent survey paper [9,10] and the
references therein. This problem is closely related to determine
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the joint spectral radius (JSR) of the set of subsystems. However,
as shown in [11], computing the JSR is extremely hard. The diffi-
culty mainly stems from the fact that there exist infinite switching
laws. To circumvent this obstacle, a natural idea is characterizing
the most destabilizing switching laws. This enables us to compute
the JSR along several specific switching laws and analyze stabil-
ity under arbitrary switching. Finding the most unstable switching
law is an optimal control issue, it naturally reminds us of the vari-
ational approach [12]. Recently, considerable research efforts have
been directed towards the development of variational approach in
the stability analysis of switched systems [13-15]. However, it is
noticed the aforementioned schemes are only applicable to deter-
ministic switched systems. Extra efforts are needed to analyze sta-
bility under arbitrary switching in a stochastic setting.

In real world, not all technological processes can be adequately
represented by deterministic systems such as chemical process
and biology engineering [16,17]. Besides, to handle ubiquitous
uncertainties in realistic system models, one can also describe
uncertainties using stochastic models and design a control strategy
to meet the design criteria. Researchers are directed to approach
switched stochastic systems from various directions [16-21].
Many nice works in stochastic stability of jump linear systems
have been reported; see [22,23], and the references therein. Based
on dwell time or average dwell time constraints, mean-square
stability of switched linear stochastic systems has also been
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studied in [16,19,24]. In spite of progress, it should be mentioned
that these results concerning stability analysis impose restrictions
on the switching signal. To the best of our knowledge, there are
limited results dealing with stability analysis of switched linear
stochastic systems under arbitrary switching. The difficulty lies in
determining the JSR of a set of bounded linear operators.

This paper attempts to characterize the “most unstable”
switching law for discrete-time switched systems (DSS) governed
by a set of bounded linear operators. To apply the variational
approach pioneered by E.S. Pyatnitskii, we embed the DSS in
a generalized class of discrete-time bilinear systems (DBS). A
second-order necessary optimality condition is derived for the
DBS associated with a Mayer-type optimal problem. Optimal
equivalence between the DBS and the DSS is then analyzed, which
indicates that any optimal control can be equivalently expressed
as a switching law. This specific switching law is most unstable
for the DSS, and thus can be used to compute the JSR. Based on
the second-order moment of the state, the proposed approach is
applied to analyze global uniform mean-square stability (GUMS)
of discrete-time switched linear stochastic systems (DSLSS).

The rest of the paper is organized as follows. The problem
is formulated in Section 2. Section 3 presents the main results,
followed by the application to GUMS analysis of the DSLSS in
Section 4. Numerical simulations are presented in Section 5 and
conclusions are made in the final section.

Notations: §, is the Hilbert space composed of n x n symmetric
matrices with the inner product (-,-) defined by (Y1,Y;) =
tr(Y1Yy), VY1,Y, € 8, The set of natural numbers and n-
dimensional real vectors are respectively denoted by N and R".
Denote by .#(8,) the set of all bounded linear operators from 4§, to
$n.For £ € Z2(8y), let | L] = maxyyj=1yves, [IL(¥Y)]. Throughout
the paper, denote by || - || the norm of a vector in R", a matrix in
4, or a operator in .#(4,) induced by (-, -) without ambiguity. E
stands for the mathematical expectation with respect to the given
probability measure &, and tr(-) denotes the trace of a square
matrix. efﬂ_l denotes the ith column of the (m—1) x (m—1) identity
matrix. The symbol vec(-) represents the linear operator stacking
the entries of a matrix columnwise, and while vec~!(-) denotes the
linear inverse operator. oy« (-) denotes the maximal eigenvalue of
a positive semi-definite matrix. For a vector or a matrix Y, we write
Y < 0(>= 0) if all elements of Y are (no) less than 0.

2. Problem formulation

LetL = {L£; € Z(8n)}ies WithM = {0, 1..., m— 1}. Consider
the following DSS described by L

Z(k+ 1) = £y x(ZK)), Z2(0) = Zo,

where Z(k) € 4, is state, and y(-) : N — M is the switching
law. This models a system that can switch among the m linear
subsystems Z(k + 1) = «£;(Z(k)),i € M with the switching
law determining which system is active at each time step. DSS (1)
represents various discrete-time switched linear systems in both
deterministic and stochastic settings, see [25,26].

keN (1)

Definition 1. DSS (1) is said to be globally uniformly asymptoti-
cally stable (GUAS) if for any Z, € 4, and any switching law y (k),
limy 0 |1Z(k)||* = 0.

Definition 2. For an arbitrarily fixed final time N € N, a switching
law maximizing ||Z(N)||> is referred as the “most unstable”
switching law and denoted by y* (k).

Problem 1. For an arbitrarily fixed final time N € N, find the “most
unstable” switching law y* (k).

As shown in [27], DSS (1) is GUAS if and only if the JSR of L
satisfies p(L) < 1, where p(L) = lim_, o (L) with p(L) =

max{|[L;, - - Lip |l el : ij € M}. A natural idea is to characterize
y*(k), and analyze the corresponding trajectory Z* (k). It is clear
that if ||Z* (k) ||> converges to origin along with time evolution, so
does the norm of any other solution. Via this transformation, we
only need to compute the operator norm along with y*(k) for
determining the JSR. To apply the variational approach, we embed
DSS (1) in the following DBS described by L

m—1
Z(k+1) = <£0 + ui(k)£i> (Zk), uk eu (2)

i=1
where B; = £L; — £, the control set U is given by

m—1
U= {u(k) e R™ ' ui(k) >0, Zu,-(k) < 1} (3)
i=1

withu(k) = (uy(k) ... uy_1(k)) € U. When u(k) is bang-bang,
taking values in the set {0, e}nq, e, enm;}} for any k € N, DBS (2)
reduces to DSS (1). Fix an arbitrary final time N € N, and consider

the Mayer-type optimal problem
max J(N; u(k), Zo) = max [Z(N; u(k), Zo)||*, (4)
u(k)eu u(k)eu

where Z(N; u(k), Zy) denotes the solution of (2) corresponding
to u(k) at time N. We refer such a control as an optimal control,
denoted by u*(k). If there always exists an optimal control u* (k)
that is bang-bang, then y*(k) for DSS (1) and u* (k) for DBS (2) are
equivalent with respect to the issue of maximizing ||Z(N)||?.

Definition 3. We say DBS (2) is globally asymptotically stable
(GAS) if for any u(k) € U, Zy € &y, limy_. o0 Z(N; u(k), Zg) = 0.

Definition 4. For any u(k) € U, a perturbation v(k) is said to be
admissible if u(k) + v(k) € U.

Lemmal. Letw = [w; ... wy—1]' € R"1and G = (Gyj) > 0 €
Sm_1 be given. For any u € U, define f (v) = v'w + v'Gv, where v €
R™~1is any admissible perturbation of u. Suppose that f(v) < 0 for
all admissible perturbations, then the following statements hold: (i) If
w < 0, thenu = O; (ii) If w; > 0and w; > w; for any j # i, then
u=¢€ ;i) If w = 0, then G = 0.

Proof. Firstly, we prove (i) by contradiction. If u # 0, it implies
that there must exist an index j such that u; > 0. Choose a
sufficiently small positive scalar e such that v = —ee), , is an
admissible perturbation, we have f(v) = —ew; + eZij > 0. This
contradicts f (v) < 0. Thus, we haveu = 0.

Secondly, assume that w; > 0 and w; > wj foranyj # i,
andu # e _,.Since u # €, there are two cases: u = e, _,
with 6 € [0, 1) and there exists an index j such that u; > 0. For
the former, choosing an admissible perturbation v = eein_1 yields

f(v) > 0; while for the latter, letting v = e(efﬂ_l — e’m_l) be an
admissible perturbation, we obtain f (v) = e(w; — wj) +v'Gv > 0.
Based on the above analysis, we have u = €/, _,.

Thirdly, for any u € U, we can find a group of admissible
perturbations {vq, Vs, ..., Vv,_q} that is a basis of R™!. Thus,
the statement (iii) holds by noting f(v) < 0 for all admissible
perturbations. O

Definition 5. For a given £ € Z(4,), £ is said to be the Hilbert
adjoint operator of £ if it holds

(L(Y1),Y2) = (Y1, L(Y2)), VYi, Y5 € 8. (5)

Lemma2. Forany o € R, £y, L, € Z(8,), we have L1L£, =
Ly L1, L1 =Ly, aly =aLy, [|L1] = [|L1]l.
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