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a b s t r a c t

As is well known, noise may play a stabilizing or destabilizing role in continuous-time systems. But, for
analysis and design of discrete-time systems, noise is treated as disturbance in the literature. This paper
studies almost sure stability of general n-dimensional nonlinear time-varying discrete-time stochastic
systems and presents a criterion based on a numerical result derived fromHigham (2001), which exploits
the stabilizing role of noise in discrete-time systems. As an application of the established results, this paper
proposes a novel controller design method for almost sure stabilization of linear discrete-time stochastic
systems. The effectiveness of the proposed design method is verified with an example (an aircraft model
subject to state-dependent noise), to which the existing results do not apply.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, stochastic systems described with
stochastic differential/difference equations have been intensively
studied since stochastic modeling has come to play an important
role in science and engineering (see [1–10] and the references
therein). In the literature, there are several different concepts of
stability for stochastic systems such as stability in probability, pth
moment stability and almost sure stability [1,7], while amajor part
of the works has been dedicated explicitly or implicitly to mean-
square stability (see, e.g., [1,11,4–7,12,13] and the references
therein). As far asmean-square stability is concerned, noise always
plays a destabilizing role and hence is treated as disturbance since
there is noway an unstable system can be stabilized by noise in the
mean-square sense [8].

However, in the almost sure sense, noise can not only be used
to destabilize a given stable system but also be used to stabilize
a given unstable system or to make a system even more stable.
The literature on stabilization and destabilization by noise is ex-
tensive (see [1,14–18,1,19,15] and the references therein). Among
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the key results, Mao [15] proposed a theory on stabilization and
destabilization by Brownianmotion for differential equations with
the global Lipschitz condition; afterwards these results were sig-
nificantly improved by Appleby et al. [18], which includes a much
more general class of nonlinear dynamical systems; most recently,
Huang [19] further developed the theory and revealed the more
fundamental principle for stochastic stabilization and destabiliza-
tion of nonlinear differential equations. These results on almost
sure stability of stochastic differential equations have been applied
to study feedback stabilization problems of stochastic systems, see,
e.g., [8], where the results onmean-square stability may not be ap-
plicable.

It is noticed that almost sure stability and stabilization of
stochastic differential equations, or say, continuous-time stochas-
tic dynamical systems have received much attention while rel-
atively few works (see, e.g., [3,9]) are concerned with those
problems of stochastic difference equations, or say, discrete-time
stochastic dynamical systems. As is known, whenever a computer
is used in measurement, computation, signal processing or control
applications, the data, signals and systems involved are naturally
described with discrete-time processes, see, e.g., [20,21]. There-
fore, theory of discrete-time dynamic signals and systems is useful
in design and analysis of control systems, signal filters, and state es-
timators from time-series of process data as well as scientific com-
putations. As amatter of fact, discrete-time stochastic systems and
those discretized from continuous-time stochastic systems have
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been intensively studied over the past few decades, see [9,6,2,
22,23,3,24,25,11,12] and the references therein. Most of these re-
sults study stochastic systems in mean-square sense since it is of-
ten relatively easier to analyze some properties such as stability
and asymptotic behavior in this way [9]. But, as is well known, a
mean-square unstable system could be almost surely asymptoti-
cally stable (or, simply, almost surely stable), which is concerned
with all paths on the sample space and is more desired in many
practical cases. It is also observed that some existing works focus
on scalar systems (e.g., [9]) and few work investigates the almost
sure stability of general n-dimensional time-varying discrete-time
stochastic systems. This paper studies the almost sure stability of
n-dimensional time-varying discrete-time stochastic systems (1)
below. Based on a numerical result that is the development of a
stability result for scalar linear time-invariant systems in [3], this
paper establishes a criterion on almost sure stability of (1) and ap-
plies it to state-feedback controller design for almost sure stabi-
lization of linear systems (48). The effectiveness of our proposed
results are verified with application examples including an aircraft
model subject to state-dependent noise, where the existing results
do not work.

The rest of this paper is organized as follows: notation and
preliminaries are given in Section 2; in Section 3, an important
criterion for almost sure stability of general n-dimensional
discrete-time (time-varying) stochastic systems (1) is established
based on a numerical result; Section 4 applies this established
result to linear discrete-time systems and proposes a novel design
method of state-feedback controller for almost sure stabilization
of linear discrete-time stochastic systems; concluding remarks on
our proposed method are given in Section 5.

2. Preliminaries

Our problemwill be embedded in anunderlying complete prob-
ability space (Ω,F , {Fk}k≥0, P)with a natural filtrationFk1 ⊂ Fk2
for k2 > k1, where Ω is the sample space, F is the σ -algebra
that defines events E in Ω which are measurable, i.e., for which
the probability P(E) is defined. Let E[·] be the expectation opera-
tor with respect to the probability measure. Let (Fk,F

+

k ), k ≥ 0,
be a pair of families of σ -algebras such that (i) Fk ⊂ F is mono-
tone increasing, (ii) F +

k ⊂ F is monotone decreasing, and (iii) Fk

and F +

k are independent for all k ≥ 0. Throughout this paper, un-
less otherwise specified, the following notation shall be employed.
Denote by Z, Z+, R and R+ the sets of all integers, nonnegative
integers, real and nonnegative real numbers, respectively. For real
numbers x and y, denote by x∨ y (resp. x∧ y) the maximum (resp.
minimum) of x and y while ±x ≥ y (resp. x ≥ ±y) means that
x ≥ y or −x ≥ y (resp. x ≥ y or x ≥ −y). A function f : Rn

× Z+

→ Rn is said to be of class CZ+
(Rn

; Y ) if, for each fixed k ∈ Z+, the
function f (·, k) is a continuousmapping fromRn toRn. If A is a vec-
tor or matrix, its transpose is denoted by AT . If P is a square matrix,
P > 0 (P < 0)means that P is a symmetric positive (negative) def-
initematrix of appropriate dimensionswhile P ≥ 0 (resp. P ≤ 0) is
a symmetric positive (resp. negative) semidefinite matrix. I stands
for the identity matrix of appropriate dimensions. Denote byλM(·)
(resp.λm(·)) the maximum (resp. minimum) eigenvalue of a ma-
trix. Let | · | denote the Euclidean norm of a vector or its induced
norm of a matrix. Unless explicitly stated, matrices are assumed to
have real entries and compatible dimensions.

Let us consider a discrete-time stochastic system

xk+1 = f (xk, k)+ g(xk, k)wk+1, k ∈ Z+ (1)

with initial condition x0 ∈ Rn
\ {0}, where functions f (·, ·) and

g(·, ·) are of class CZ+
(Rn

; Rn) and {wk}k≥0 is an independent and
identically distributed (i.i.d.) sequence with zero mean and unit
variance. In this work, assume thatwk obeys Gaussian distribution

N (0, 1) (see, e.g., [6,2,3,25,12]). This paper is to study almost sure
stability of system (1) and its applications to stabilization problems
of (linear) discrete-time stochastic systems.

In this paper, we apply some results of L-mixing processes [26]
and define

Ft = σ {wk : 0 ≤ k ≤ t} and F +

t = σ {wk : k ≥ t + 1}. (2)

It should be pointed out that one can employ some other tech-
niques (see, e.g., [27]), instead of the L-mixing processes, in this
work. Obviously, xk is Fk measurable with respect to (Fk,F

+

k ) for
all k ≥ 0. Assume that f and g of class CZ+

(Rn
; Rn) satisfy the fol-

lowing conditions:

Assumption 2.1. For all k ≥ 0, f (0, k) ≡ g(0, k) ≡ 0.

Assumption 2.2. For all k ≥ 0, there is a function βL : R+ → R+

with βL(|x|) > 0 for all |x| > 0 such that

|f (x, k)|2 ∨ |g(x, k)|2 ≥ βL(|x|). (3)

By virtue of continuity of functions f and g , there exists a unique
adapted process {xk}k≥0 a.s., which is the solution of (1). Obviously,
under Assumption 2.1, limk→∞ xk = 0 a.s. on {ϑ

x0
0 < ∞}, where

ϑ
x0
0 = inf{t ≥ 0 : |xt | = 0}. (4)

Naturally, it is more interesting and important to study the
(asymptotic) properties of the samples on {ϑ

x0
0 = ∞}. The result

given below describes a property of the solutions of (1) about ϑ x0
0 .

Proposition 2.1. Suppose that f and g obey Assumptions 2.1–2.2.
Then there exists a unique adapted process {xk}k≥0, which is the
solution of (1), such that ϑ x0

0 = ∞ a.s.

Proof. System (1) gives

|xk+1|
2

= |f (xk, k)|2 + |g(xk, k)|2|wk+1|
2
+ 2f T (xk, k)g(xk, k)wk+1

for all k ≥ 0, where {wk} is an i.i.d. sequence with wk ∼ N (0, 1).
This with Assumption 2.2 implies P{xk+1 = 0|xk ≠ 0} = 0. Since
x0 ≠ 0, this, by induction, gives P{xk = 0} = 0 for k ≥ 1, which
yields the desired result. �

Example 2.1. The scalar nonlinear system

xk+1 = esin(k)[x1/3(k)+ x(k)]

+ [|x(k)|1/2 + ecos(k)x(k)]wk+1, x0 ≠ 0 (5)

satisfies Assumptions 2.1–2.2 and therefore obeys ϑ x0
0 = ∞ a.s.

The definition of L-mixing processes [26] is cited as follows,
which is useful for the development of this work.

Definition 2.1. A stochastic process {sn} is L-mixing with respect
to the σ -algebras (Fn,F

+
n ) if the following conditions are

satisfied: (i) sn is Fn measurable, (ii) supn≥0 E1/q

|sn|q


< ∞ for

all 1 ≤ q < ∞, (iii)


∞

τ=0 γq(τ ) < ∞ for all 1 ≤ q < ∞, where

γq(τ ) = sup
n≥τ

E1/q
sn − E[sn|F +

n−τ ]
q , τ ≥ 0.

3. Almost sure stability of discrete-time stochastic systems

In this section, we study almost sure stability of discrete-time
stochastic system (1) and establish a stability criterion based on



Download English Version:

https://daneshyari.com/en/article/7151742

Download Persian Version:

https://daneshyari.com/article/7151742

Daneshyari.com

https://daneshyari.com/en/article/7151742
https://daneshyari.com/article/7151742
https://daneshyari.com

