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a b s t r a c t

This article presents a new approach for solving the Optimal Control Problem (OCP) of linear time-
delay systems with a quadratic cost functional. The proposed method can also be used for designing
optimal control time-delay systemswith disturbance. In this study, theVariational IterationMethod (VIM)
is employed to convert the original Time-Delay Optimal Control Problem (TDOCP) into a sequence of
nonhomogeneous linear two-point boundary value problems (TPBVPs). The optimal control law obtained
consists of an accurate linear feedback term and a nonlinear compensation term which is the limit of an
adjoint vector sequence. The feedback term is determined by solving Riccati matrix differential equation.
By using the finite-step iteration of a nonlinear compensation sequence, we can obtain a suboptimal
control law. Finally, Illustrative examples are included to demonstrate the validity and applicability of
the technique.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The control of systemswith time-delay has beenof considerable
concern. Delays occur frequently in biological, chemical, electronic
and transportation systems [1]. Time-delay systems are therefore
a very important class of systems whose control and optimization
have been of interest to many investigators. The application of
Pontryagin’s maximum principle to the optimization of control
systems with time-delays as outlined by Kharatishvili [2], results
in a system of coupled TPBVP involving both delay and advance
terms whose exact solution, except in very special cases, is very
difficult. Therefore, the main object of all computational aspects of
optimal time-delay systems has been to devise a methodology to
avoid the solution of the mentioned TPBVP.

Concerning the solution of TDOCPs, Inoue et al. [3] have pro-
posed a sensitivity approaches to optimization of linear systems
with time delay. They expanded the control in Maclaurin’s series
in the delay and obtained the series coefficients from the solution
of simple TPBVPs. The method presented in Jamshidi and Razza-
ghi [4], Malek-Zavarei [5] are also sensitivity approaches in which
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the original system is embedded in a class of non-delay systems us-
ing an appropriate parameter. Chen et al. [6] used the Taylor expan-
sion to estimate time-delay state variables under the framework
of Iterative Dynamic Programming (IDP). In general the computed
response of the delay systems via the Taylor series is not in good
agreement with the exact response of the system. The TDOCPs
have also been solved using orthogonal functions. There are three
classes of sets of orthogonal functions that are widely used. The
first includes sets of piecewise constant basis functions (such as
the Walsh functions, block pulse functions). The second consists
of sets of orthogonal polynomials (such as the Legendre polyno-
mials and Chebyshev polynomials). The third is the widely used
sets of sine–cosine functions in Fourier series. This technique con-
sists of reducing the problem to solve a system of algebraic equa-
tions. The approach is based on converting the underlying differ-
ential equation into integral equation through integration, approx-
imating various signals involved in the equation by truncated or-
thogonal series, and using the operational matrix of integration to
eliminate the integral operations. Typical examples are the Walsh
functions [7], Chebyshev polynomials [8], and the linear Legendre
multi-wavelets [9]. Recently, the TDOCPs have been solved using
the hybrid functions, which consist of the combination of block-
pulse functions with Legendre polynomials [10], Bernoulli polyno-
mials [11], and Taylor polynomials [12].

In recent years, a growing interest has been appeared toward
the application of VIM techniques in various types of problems,
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andmanynewmethods have been introduced in the literature. The
variational iterationmethod, whichwas proposed originally by the
Chinese mathematician He [13–15], has been proved by many au-
thors as a powerful mathematical tool for various kinds of linear
and nonlinear problems [16–20]. The reliability of the method and
the reduction in the size of computational work gave this method
wider applications. Themain idea in the VIM is to construct an iter-
ative sequence of functions converging to an exact solution. Since
the method works without discretization, linearization, transfor-
mation, or perturbation of the problem, it is not affected by round
of error. The VIM has been applied successfully in a wide range
of problems, such as partial differential equations [21], fractional
differential equations [22],delay differential equations [14], and
integro-differential equations [23]. The convergence of He’s VIM
has been discussed in [24,25]. The variational iterationmethod us-
ingHe’s polynomials has been introduced in [26–28]. Among a var-
ious number of VIM applications, the use of this method in solving
Riccati equations (see for example [29]), made it a powerful tool
in the context of control theory. However, for time delay optimal
control problems, the VIM is still not applied.

The aim of this paper is to employ the VIM for solving the OCP
of linear time-delay systems with a quadratic cost functional. In
addition, the proposed method can also be used for a class of lin-
ear time-delay systems affected by external persistent disturbance.
Applying the VIM, the original TDOCP is transformed into a se-
quence of linear TPBVPs involving both delay and advance terms.
The optimal control law obtained consists of an accurate linear
feedback term and a nonlinear compensation term which is the
limit of an adjoint vector sequence. By using the finite-step itera-
tion of the nonlinear compensation sequence, we can obtain a sub-
optimal control law.

The paper is organized as follows. Section 2 is devoted to
Pontryagin’smaximumprinciple used for solving linear time-delay
optimal control problem. Section 3 is dedicated to the proposed
design approach to solve a close-loop optimal control problem
based on the VIM, modified variational iteration method (MVIM)
and convergence of the method is demonstrated. We present the
model of the system with an external persistent disturbance in
Section 4. Section 5 explains how to use the results of Sections 3
and 4 in practice. In this section, in order to obtain a suboptimal
control law, an efficient algorithm with low computational
complexity and fast convergence rate is presented. In Section 6 the
numerical examples are simulated to show the resemblance of our
theory and demonstrate the performance of our network. Finally,
we end this paper with conclusions in Section 7.

2. Problem statement and optimality conditions

First, let us introduce a definition.

Definition 2.1. A function x(t) from an interval [t0, tf ] of the real
numbers into an Euclidean space Rn is called piecewise contin-
uous on this interval except for some finite number of jump
discontinuities. We denote the vector space of such functions
by PC([t0, tf ],Rn), and its subspace whose elements are contin-
uous and have piecewise continuous first order derivatives by
PC1([t0, tf ],Rn) [30].

Consider a linear system with state time-delay described by:
ẋ(t) = Ax(t)+ A1x(t − τ)+ Bu(t), t0 6 t 6 tf ,
x(t) = φ(t), t0 − τ 6 t 6 t0,

(2.1)

where x(t) ∈ PC1([t0 − τ , tf ],Rn) and u(t) ∈ PC([t0, tf ],Rm), are
the state and control vectors respectively, τ > 0 is the constant
time-delay, A, A1 and B are real constant matrices of appropriate
dimensions, and φ(t) ∈ C([t0 − τ , t0],Rn) is the continuous initial

state function. Here, it is assumed that the pair (A + A1, B) is
controllable [30]. The objective is to find the optimal control law
u∗(t) over t ∈ [t0, tf ], which minimizes the following quadratic
cost functional subject to the system (2.1):

J =
1
2
xT (tf )Qf x(tf )

+
1
2

 tf

t0


xT (t)Qx(t)+ uT (t)Ru(t)


dt, (2.2)

where Qf ∈ Rn×n and Q ∈ Rn×n are positive semi-definite
matrices, and R ∈ Rm×m is a positive definite matrix.

Since the performance index (2.2) is convex, the following
extreme necessary conditions are also sufficient for optimality
[2,13,30]:

ẋ = Hλ(x, u∗, λ, t),
λ̇ = −Hx(x, u∗, λ, t),
u∗

= argminuH(x, u, λ, t)
x(t) = φ(t), t0 − τ 6 t 6 t0,

(2.3)

where

H(x, u, λ, t) =
1
2
xT (t)Qx(t)+

1
2
uT (t)Ru(t)

+ λT (t)[Ax(t)+ A1x(t − τ)+ Bu(t)]. (2.4)

According to Pontryagin’s maximum principle of OCPs with
time-delay (2.1), the necessary conditions of optimality can be
written as:

ẋ(t) = Ax(t)+ A1x(t − τ)− Sλ(t), t0 6 t 6 tf ,

λ̇(t) =

−Qx(t)− ATλ(t)− AT
1λ(t + τ),

t0 6 t < tf − τ ,

−Qx(t)− ATλ(t), tf − τ 6 t 6 tf ,
x(t) = φ(t), t0 − τ ≤ t 6 t0,
λ(tf ) = Qf x(tf ),

(2.5)

where S = BR−1BT , x(t−τ) is time-delay term andλ(t+τ) is time-
advance term, furthermore λ(t) ∈ PC1([t0, tf ],Rn) is the co-state
vector. Also, the optimal control law is given by:

u∗(t) = −R−1BTλ(t), t0 6 t 6 tf . (2.6)

The optimal can be implemented as a closed loop optimal if the
co-state vector obtained consists of linear function of the states and
a nonlinear term which is the adjoint vector sequence, in the form

λ(t) = P(t)x(t)+ g(t), λ(tf ) = Qf x(tf ), (2.7)

where P(t) ∈ Rn×n is unknown positive-semidefinite function
matrix, g(t) ∈ Rn is the adjoint vector.

Calculating the derivatives of both sides of Eq. (2.7), we get

λ̇(t) = Ṗ(t)x(t)+ P(t)ẋ(t)+ ġ(t), t0 6 t 6 tf
=

Ṗ(t)+ P(t)A − P(t)SP(t)


x(t)− P(t)Sg(t)

+ P(t)A1x(t − τ)+ ġ(t), (2.8)

on the other hand, substituting (2.7) in the necessary conditions
(2.5), we have

λ̇(t) =


−Qx(t)− ATP(t)x(t)− ATg(t)

− AT
1P(t + τ)x(t + τ)− AT

1g(t + τ),
t0 6 t < tf − τ ,

−Qx(t)− ATP(t)x(t)− ATg(t), tf − τ 6 t 6 tf .

(2.9)
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