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a b s t r a c t

This paper studies stabilization of linear systemswith both state and input delays. A dynamic input-delay
compensator obtained by adding integrators is established to compensate the input delays that can be
arbitrarily large. With the input delay compensator, the original stabilization problem reduces to the
problem of stabilizing an augmented linear time-delay system without input delay. Three methods are
also proposed to design stabilizing controllers for the augmented linear time-delay system. The first
method is based on linear matrix inequalities (LMIs) and the secondmethod is based onmodel reduction.
The thirdmethod is based onpole placement and is built for the particular case that the original time-delay
system has only a pure delayed state vector on its right hand side. For this method, the optimal gain such
that the decay rate of the closed-loop system is maximized is also proposed. The effectiveness of the
proposed approaches is illustrated by three linear time-delay systems that are open-loop unstable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Time delay systems have received considerable attentions
during the past several decades because of their wide applications
in engineering and their infinite dimensional behavior that is
theoretically challenging [1–5]. For systems with delays existing
only in the actuators, the predictor-type (also known as model
reduction) controllers have been extensively investigated in the
literature [6–9]. The advantages of the predictor-type controllers
are that the closed-loop systems only possess finite spectrum and
arbitrary decay rates can be assigned. The main difficulty of this
approach is that the resulting controllers involve integrals of the
past controls and thus can only be implemented by numerical
integrals in most cases [9]. Very careful attention should be put on
such approximation since it may result in instability of the overall
closed-loop systems [10].

The classical predictor-type controllers have now been ex-
tended to linear systems that have both state and input delays.
In [11], a general system in strict-feedback form with delayed in-
tegrators is investigated and a predictor-type feedback controller
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is proposed. In [12], delay-adaptive predictor feedback control for
linear feedforward systems is studied. In [13], the forwarding and
backstepping approaches built initially in nonlinear control are ex-
tended to the design of controllers achieving finite spectrum as-
signment for linear systems that have both state and input delays
and possess some feedforward and feedback structures. The clas-
sical predictor-type controllers have also been extended to non-
linear systems that have both state and input delays [14,15]. All
of these methods mentioned above lead to static and/or dynamic
controllers that involve integrals of the states and/or the inputs.
Recently, for a class of linear systems with both (time-varying)
state and input delays, and all eigenvalues being at zero (which
is a generalization of multiple integrators), linear controllers us-
ing only the current state (namely, x (t)) are designed in [16] to
achieve stability.

In this paper we study stabilization of linear systems with both
state and input delays that are constant and can be arbitrarily large.
To solve the underlying difficulty that the input delays may be
(significantly) larger than the state delay, a dynamic compensator
obtained by adding integrators is established to compensate the
large input delays. With the proposed input-delay compensator,
the original stabilization problem reduces to the problem of stabi-
lizing an augmented linear time-delay systemwithout input delay
(or the input delay equaling the state delay). Three methods are
then developed to stabilize the augmented time-delay system. The
first method is based on LMIs and the second method is based on
model reduction which relies on solutions to a class of nonlinear
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matrix equations. By assuming that the nonlinear matrix equation
associated with the original time-delay system in the absence of
input delay is available, solutions to the nonlinear matrix equation
associatedwith the augmented time-delay system can be obtained
immediately by solving a linear matrix equation. The third stabi-
lizing controller design method is established for the case that the
term x (t), which is the state vector, does not appear in the system
equation. This method is based on the fact that the linear time-
delay system ẋ (t) = Ax (t − τ) is asymptotically stable if and only
if the poles of A are located within some bounded region referred
as stable region. As a result, stabilization of the augmented linear
time-delay system can be achieved if controllers are designed such
that the closed-loop system takes the form ẋ (t) = Ax (t − τ) and
the poles of A are within the stable region. For this method, we also
discuss how to design the gains of the controllers such that the de-
cay rate of the closed-loop system is maximized. Three numerical
examples are given to illustrate the effectiveness of the proposed
approaches.

The problem of compensating input delay for linear systems
with both input and state delays, as far as we know, was studied
in [17] for the first time. The approach in [17] is based on nested
predictor which results in controllers involving multiple integrals.
This paper provides an alternative solution to the input delay com-
pensation problem by adding integrators. The resulting controller
is a dynamic compensator. The dynamic compensator possesses
some advantages over the nested predictor based compensator. On
the one hand, the dynamic compensator is in an explicit and simple
form, while the nested predictor based compensator is defined in
a recursive way and is quite complicated as it involves multiple in-
tegrals. On the other hand, the dynamic compensator is more easy
to implement than the nested predictor based compensator as the
later one involves both input filters andmultiple integrals; yet their
control performances are comparable. This factwill be approved by
a numerical example in Section 5.2.

The remainder of this paper is organized as follows. The general
idea of input delay compensation by adding integrators will be in-
troduced in Section 2. The model reduction approach is then built
in Section 3 to stabilize the augmented time-delay system. In the
case that the state vector x (t) does not appear in the system equa-
tion, a pole placement approach will be established in Section 4
to stabilize the augmented time-delay systems obtained by adding
integrators. Examples are given in Section 5 and, finally Section 6
concludes the paper.

2. Input delay compensation by adding integrators

Consider a time-delay system with both state and input delays
in the form of

ẋ (t) = A0x (t)+ Aτ x (t − τ)+ Bhu (t − h) , t ≥ 0, (1)

where h = (δ − 1) τ + 1τ with δ ≥ 1 being an integer
and 1τ ∈ [0, τ ), and (A0, Aτ , Bh) ∈


Rn×n,Rn×n,Rn×m


are

known constants. Let the initial condition of the above system
be x(θ), u(θ), ∀θ ∈ [−δτ , 0]. In this paper, we consider the
stabilization problem for system (1). The difficulty of this problem
lies in the fact that the delay appears in both the state and the input
and, moreover, the delays can be arbitrarily large (but bounded). If
Aτ = 0, the delay system (1) can be efficiently controlled by the
classical predictor feedback which aims to compensate the input
delay so that the resulting closed-loop system is delay-free (see,
for example, [6]). The classical predictor feedback approach was
recently generalized in [17] to stabilize system (1) by assuming
that a stabilizing controller is available for the corresponding time-
delay system

ẋ (t) = A0x (t)+ Aτ x (t − τ)+ Bhu (t) , t ≥ 0, (2)

which does not have input delay. The idea in [17] is to compensate
the input delay of system (1) by using nested predictors. The
resulting controller involves multiple integrals and must be
implemented by approximated numerical integration [17]. In this
paper, we will provide an alternative input delay compensation
approach for system (1) by adding integrators.

The idea of ‘‘adding integrators’’ can be explained as follows.
Firstly, by setting

u (t) = u (t − (τ −1τ)) , (3)

the delay system (1) can be expressed as

ẋ (t) = A0x (t)+ Aτ x (t − τ)+ Bhu (t − δτ) . (4)

Now we choose an auxiliary state vector Z1 (t) as

Z1 (t) = u (t − (δ − 1) τ ) . (5)

Then the time-delay system in (4) can be rewritten as

ẋ (t) = A0x (t)+ Aτ x (t − τ)+ BhZ1 (t − τ) . (6)

It follows from (5) that u (s) = Z1 (s) e(δ−1)τ s by which we see
that u (t) needs to know (δ − 1) τ seconds ahead of Z1 (t). We then
consider the integrator

Ż1 (t) = Z2 (t − τ) , (7)

which implies u (s) =
1
s Z2 (s) e

(δ−2)τ s, namely, u (t) needs to know
only (δ − 2) τ seconds ahead of Z2 (t). Repeat the above process by
adding the integrators

Żi (t) = Zi+1 (t − τ) , i ∈ I [2, δ − 1] , {2, 3, . . . , δ − 1}, (8)

to give u (s) =
1

sδ−1 Zδ (s). Hence u (t) can be obtained by
integrating Zδ (t)without knowing the future information of Zδ (t).
Finally, we choose the (new control) vector Zδ+1 (t) such that

Żδ (t) = Zδ+1 (t) , t ≥ 0, (9)

and it follows that u (s) =
1
sδ Zδ+1 (s). Now we rewrite the overall

system consisting of (6)–(9) as
ẋ (t) = A0x (t)+ Aτ x (t − τ)+ BhZ1 (t − τ) ,

Żi (t) = Zi+1 (t − τ) , i ∈ I [1, δ − 1] ,
Żδ (t) = Zδ+1 (t) ,

(10)

or equivalently,

ζ̇ (t) = A0ζ (t)+ Aτ ζ (t − τ)+ BZδ+1 (t) , (11)

where ζ (t) =

xT (t) , ZT

1 (t) , . . . , Z
T
δ (t)

T
∈ Rn+mδ is the

augmented state vector, Zδ+1 (t) is the input vector to be designed,
and

A0 =


A0 0n×mδ

0mδ×n 0mδ×mδ


,

Aτ =

 
Aτ Bh


0n×m(δ−1)

0m(δ−1)×(n+m) Im(δ−1)
0m×(n+m) 0m×m(δ−1)

 ,
B =


0(n+(δ−1)m)×m

Im


.

(12)

Notice that the time-delay system in (11) has only a single state
delay τ which is the same as that in the original system (1), and
has no input delay.

By adding integrators, stabilization of the original time-delay
system (1) with both state and input delays now reduces to the
stabilization of the augmented time-delay system (11) without
input delay, namely, the input delay is ‘‘compensated’’. In the
following, we show how to use stabilizing controllers for the
augmented time-delay system (11) to stabilize the original time-
delay system (1).
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