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a b s t r a c t

This paper revisits the stochastic near-optimal control problem considered in Zhou (1998), where the
stochastic system is given by a controlled stochastic differential equation with the control variable taking
values in a general control space and entering both the drift and diffusion coefficients. A necessary
condition of near-optimality is derived using Ekeland’s variational principle, spike variation techniques,
and some delicate estimates for the state and the adjoint processes. We improve the error bound of order
from ‘‘almost’’ ε

1
3 in Zhou (1998) to ‘‘exactly’’ ε

1
3 .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, near optimization has become an impor-
tant research topic in optimal control theory. Compared with its
exact-optimality counterpart, near optimality has many appealing
properties, which are useful in both theory and applications. For
example, near-optimal controls always exist whereas optimal con-
trols may not exist in many situations; there are many candidates
for near-optimal controls, which can be selected easily and appro-
priately for analysis and implementation. In most practical situ-
ations, a near-optimal control suffices to guide decision making,
whereas it is usually unrealistic and unnecessary to explore opti-
mal controls that are very sensitive to external perturbations. In-
terested readersmay refer to Ref. [1] for an in-depth discussion aof
the merits of near optimality.

Indeed, there have been many studies on near-optimal con-
trols in both deterministic and stochastic cases. Refs. [2,3] investi-
gated near-optimal controls for deterministic dynamical systems.
The history of near optimality under stochastic systems can be
dated back to Ref. [4], where necessary conditions were derived
for some near-optimal controls. Ref. [5] provided a sufficient con-
dition for near-optimal stochastic controls and applied it to general
manufacturing systems. Ref. [1] derived necessary and sufficient
conditions for all near-optimal controls under forward systems of
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the diffusion type. Current research focuses on near-optimal con-
trols under various systems. The readers are directed to Ref. [6] for
regime-switching systems; Refs. [7,8], and [9] for forward–back-
ward systems; Refs. [10] and [11] for jump-diffusion systems; [12]
for recursive systems; and references therein.

Although near optimality has been extensively studied under
different stochastic systems, the error bounds in almost all the pre-
vious literature, where the control variable can take values in a
general (non-convex) space and enter both the drift and diffusion
coefficients, are of order ‘‘almost’’ ε

1
3 and ‘‘exactly’’ ε

1
2 under the

necessary and sufficient conditions, respectively. Whether or not
the error bounds can be improved is still an open problem. In this
paper, we revisit the stochastic near-optimal control problem in
Ref. [1]. That is, a near-optimal control problemunder forward sys-
tems, where the control variable enters both the drift and diffusion
coefficients and the control space, is not required to be convex.We
consider the critical case of order ‘‘exactly’’ ε

1
3 in the necessary con-

dition for near optimality. The aim of this paper is to improve the
error bound of order from ‘‘almost’’ ε

1
3 to ‘‘exactly’’ ε

1
3 . The proof of

the necessary condition is based on Ekeland’s variational principle
and the spike variation technique. Borrowing the metric proposed
in Ref. [13], we derive some delicate estimates for the state and the
adjoint processes. Under certain linear growth and Lipschtiz con-
ditions, we show that any ε-optimal control nearly maximizes the
so-called H-function with an error order of ‘‘exactly’’ ε

1
3 . To our

knowledge, this is the best error bound among the existing studies.
The rest of this paper is structured as follows. In Section 2,

we introduce basic notation, formulate the near-optimal control
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problem, and present some useful preliminary results. Section 3
is devoted to our main result, that is, a necessary condition for
near optimality in the critical case. The final section gives some
concluding remarks.

2. Problem formulation and preliminaries

Let (Ω, F , P) be a complete probability space, on which is de-
fined a d-dimensional standard Brownian motion W (·) := {W (t)|
0 ≤ t ≤ T }, where T > 0 is a finite time horizon. Let F := {Ft |

0 ≤ t ≤ T } be a natural filtration generated by W (·) augmented
by all the P-null sets in F . We denote the predictable σ -field on
[0, T ] × Ω by P and the Borel σ -algebra of any topological space
Λ by B(Λ). Let E be a Euclidean space, in which the inner prod-
uct and the norm is denoted by ⟨·, ·⟩ and | · |, respectively. For a
function φ : Rn

→ R, its gradient is denoted by φx and its Hessian
by φxx (a symmetric matrix). If φ : Rn

→ Rk, where k ≥ 2, then
φx = [

∂φi
∂xj

]i=1,2,...,k;j=1,2,...,n is the corresponding (k × n)-Jacobian
matrix. In what follows, the transpose of any vector or matrix A is
denoted by A∗, and a generic constant by C , whichmay be different
from line to line.

Next, we introduce some spaces of random variables and
stochastic processes on (Ω, F , P). For any α, β ∈ [1, ∞), we de-
fine
• Lβ

F(0, T ; E): the space of all E-valued, F-adapted processes

{f (t, ω)|(t, ω) ∈ [0, T ] × Ω} such that ∥f ∥LβF (0,T ;E)
:=


E
 T

0

|f (t)|βdt
 1

β
< ∞;

• Sβ
F (0, T ; E): the space of all E-valued, F-adapted, càdlàg
processes {f (t, ω)|(t, ω) ∈ [0, T ]×Ω} such that ∥f ∥Sβ

F (0,T ;E)
:=

E

supt∈[0,T ] |f (t)|β

 1
β < ∞;

• Lβ
FT

(Ω; E): the space of all E-valued, FT -measurable random

variables ξ on (Ω, F , P) such that ∥ξ∥LβFT
(Ω;E)

:=

E


|ξ |

β
 1

β

< ∞; and
• Lβ

F(0, T ; Lα(0, T ; E)): the space of all Lα(0, T ; E)-valued, F-
adapted processes {f (t, ω)|(t, ω) ∈ [0, T ] × Ω} such that

∥f ∥LβF (0,T ;Lα(0,T ;E))
:=


E

 T
0 |f (t)|αdt

 β
α

 1
β

< ∞.

Let U denote the control space, which will be specified sub-
sequently. A control process u(·) is said to be admissible if it is a
U-valued and F-adapted process. The set of all admissible control
processes is denoted byA. For any admissible control u(·) ∈ A, we
consider a stochastic control problemwith the controlled stochas-
tic differential equation and the cost functional given by
dX(t) = b(t, X(t), u(t))dt + σ(t, X(t), u(t))dW (t),
X(t) = x0 ∈ Rn,

(2.1)

and

J(u(·)) = E
 T

0
f (t, X(t), u(t))dt + g(X(T ))


, (2.2)

respectively. Here, b : [0, T ]×Ω ×Rn
×U → Rn, σ : [0, T ]×Ω ×

Rn
× U → Rn×d, f : [0, T ] × Ω × Rn

× U → R, g : Ω × Rn
→ R

are given mappings such that b, σ , f are P ⊗ B(Rn) ⊗ B(U)-
measurable, and g is FT ⊗ B(Rn)-measurable.

Assumption 2.1. The following standing assumptions will be in
force throughout this paper:
(i) The control space U is a nonempty compact subset of Rk.
(ii) For each (x, u) ∈ Rn

× U , b(·, x, u), σ(·, x, u) and f (·, x, u) are
F-adapted, and g(x) is FT -measurable.

(iii) For almost all (t, ω, u) ∈ [0, T ] × Ω × U , the mapping

x → (b(t, ω, x, u), σ (t, ω, x, u), f (t, ω, x, u), g(ω, x))

is twice differentiable, and the partial derivatives of b, σ , f
and g with respect to x up to order 2 is continuous in (x, u).
Moreover, there exists a constant C > 0 such that for φ =

b, σ , f and all x, x′
∈ Rn, u ∈ U,

|φ(t, x, u)| ≤ C(1 + |x| + |u|), |g(x)| ≤ C(1 + |x|),
|φ(t, x, u) − φ(t, x′, u)| + |φx(t, x, u)

− φx(t, x′, u)| + |φxx(t, x, u) − φxx(t, x′, u)| ≤ C |x − x′
|,

|g(x) − g(x′)| + |gx(x) − gx(x′)|
+ |gxx(x) − gxx(x′)| ≤ C |x − x′

|.

Remark 2.1. Our assumptions on the control system are different
from those in Ref. [1]. From (i), we can see that the control variable
is indeed bounded in Rk. Therefore, the linear growth condition in
(iii) can be simplified as

|φ(t, x, u)| ≤ C(1 + |x|),

where φ = b, σ , f , which is essentially the same as the linear
growth condition in Ref. [1].

Under Assumption 2.1, we can see that for any given admissi-
ble control u(·), the stochastic differential equation (2.1) admits a
unique solution X(·) ∈ Sβ

F (0, T ; Rn), for any β ≥ 1. We call (X(·),
u(·)) the admissible pair, for any u(·) ∈ A. In particular, we write
Xu(·) for the state process associated with the admissible control
u(·) whenever we want to emphasize the dependence of X(·) on
u(·). The objective of the control problem is to minimize the cost
functional J(u(·)), for a given x0 ∈ Rn, over all u(·) ∈ A. Under
Assumption 2.1, it is easy to check that |J(u(·))| < ∞. Mathemat-
ically, the optimal control problem under consideration in this pa-
per is

Problem 2.1.
V (x0) = inf

u(·)∈A
J(u(·)),

subject to (X(·), u(·)) satisfies (2.1).

Here, V (x0) refers to the value function of Problem 2.1. A control
process ū(·) ∈ A is called optimal if it achieves the infimum
of J(u(·)) over A. The corresponding state process X̄(·) is called
the optimal state process. Correspondingly, (X̄(·), ū(·)) is called an
optimal pair of Problem 2.1.

As the objective of this paper is to study near-optimal controls
rather than exact-optimal ones, we give the precise definitions of
near optimality as given in Ref. [1]:

Definition 2.1. For a given ε ≥ 0, an admissible pair (Xε(·), uε(·))
is called ε-optimal, if

|J(uε(·)) − V (x0)| ≤ ε.

Definition 2.2. Both a family of admissible control pairs (Xε(·),
uε(·)) parameterized by ε ≥ 0 and any element (Xε(·), uε(·)), or
simply uε(·), in the family are called near-optimal if

|J(uε(·)) − V (x0)| ≤ r(ε)

holds for sufficient small ε, where r is a function of ε such that
r(ε) → 0 as ε → 0. The estimate r(ε) is called an error bound.
If r(ε) = Cεδ for some δ > 0 independent of the constant C , then
uε(·) is called near optimal with the order εδ .

Before we conclude this section, let us recall Ekeland’s
variational principle:



Download English Version:

https://daneshyari.com/en/article/7151755

Download Persian Version:

https://daneshyari.com/article/7151755

Daneshyari.com

https://daneshyari.com/en/article/7151755
https://daneshyari.com/article/7151755
https://daneshyari.com

