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a b s t r a c t

This paper investigates the finite horizon optimal control problem for the stochastic logical dynamical
systems with finite states. After giving the equivalent descriptions of stochastic logical dynamical system
in term of Markov process, the finite horizon optimization problem is presented in an algebraic form.
Based on semi-tensor product of matrix and the increasing dimensional technique, a succinct algebraic
expression of dynamic programming algorithm is derived to solve the optimal control problem. Examples,
including an application on stochastic Kleene’s logical optimization problem, are presented to show the
effectiveness of our main result.
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1. Introduction

In dynamical systems theory, logical dynamical system has
been widely investigated for the last two decades. The essential
feature of the logical dynamical system is that the state variable
is defined in a logic domain [1], and the logic domain usually con-
sists of a finite or a countably infinite logic states. For such kind of
systems, analysis and synthesis under a logical dynamical system
framework usually leads to simple logical control law [2,3]. There-
fore, the logic-based control becomes a hot topic in control com-
munity. Some fundamental issues such as stability, stabilization,
controllability, observability, and realization of Boolean or multi-
valued logical dynamics can be found in [4,5,2,6,7]. Regarding the
random characteristic, logical dynamical systems with stochastic
properties have been addressed in several literatures [8–10]. Finite
or infinite horizon optimal control problems for stochastic Boolean
systems (probabilistic Boolean networks) have been investigated
in [11,12]. Furthermore, the application of stochastic logical con-
trol has enriched in various fields, including genetic regulatory
networks [13], man–machine dynamic game [14] and internal
combustion engines control [15].

In this paper, the finite horizon optimal control problem
for the stochastic logical dynamical systems with finite state is
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considered. The purpose of this work is to give a sharp and easy-
to-computer-implement algebraic form of finite horizon optimal
control algorithm for the stochastic logical dynamical systems. The
main contributions of this note are as follows. (i) The dynamics
of the stochastic logical system is converted to an algebraic form
via the semi-tensor product [16] and Markov process approach.
(ii) The algebraic form of value iteration algorithm is presented to
solve the optimization problem, by deriving a matrix expression
of the dynamic programming based on the increasing dimensional
technique.

The rest of this paper is organized as follows. Section 2 is
the problem formulation, which introduces some notations and
concepts of finite horizon optimal control for stochastic logical
dynamical systems. In Section 3, after giving a brief review of
semi-tensor product, the matrix expression of the optimization
problem is represented for the stochastic logical dynamical system.
The main results of this paper are presented in Section 4 and an
application on stochastic Kleene’s logical optimization problem is
given in Section 5. Section 6 is a brief conclusion.

2. Problem formulation

Assume the logic state space consists of finite states, denoted
by S = {x1, x2, . . . , xs}, and the control space U consists of finite
controls, denoted by U = {u1, u2, . . . , ur

}, respectively.
The most usage way to describe stochastic dynamics with con-

trol is modeled by a stationary discrete-time evolution equation

xk+1 = f (xk, uk, wk), (1)
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where wk(k = 0, 1, 2, . . .), is external random disturbances, k is
the time index. Let wk(k = 0, 1, 2, . . .) be independent identical
random variable on the disturbance spaceΩ , and supposewk has a
conditional distribution FW (·|xk, uk) given current state xk and cur-
rent control uk. The probability of wk may depend explicitly on xk
and uk but not on values of prior disturbances wk−1, . . . , w0.

Consider the class of policies (also called control laws) that
consists of a sequence of functions

π = {µ0, µ1, . . . , µN−1}, (2)

where µk : S → U, k = 0, 1, . . . ,N − 1, maps states xk into
controls uk = µk(xk) and in such that µk(xk) ∈ U for all xk ∈ S.
Such policies will be called admissible. If an admissible policy π =

{µ0, µ1, . . . , µN−1} is given, the stochastic dynamical system (1)
become a closed-loop dynamical system from time 0 to time N −1
as follow

xk+1 = f (xk, µk(xk), wk), (3)

where the control input µk(xk) at time k with knowledge of the
current state xk. Given an initial state x0, and an admissible policy
π = {µ0, µ1, . . . , µN−1}, define the total expected cost

Jπ (x0) = E
wk

k=0,1,...,N−1


K(xN) +

N−1
k=0

g(xk, uk)


, (4)

where g : S × U → R is the per-step cost function and K :

S → R is the terminal cost function. We denote by Π the set of all
admissible policies π , that is, the set of all sequences of functions
π = {µ0, µ1, . . . , µN−1}. The optimal cost function J∗ is defined
by

J∗(x0) = inf
π∈Π

Jπ (x0),

subject to the stochastic logical dynamical system (1) and initial
state x0 ∈ S.

The finite horizon optimal control problem is to determine an
optimal policy π∗

∈ Π such that the cost function reaches the
optimal J∗ under the control of the optimal policy

Jπ∗(x0) = J∗(x0), for all x0 ∈ S.

It should be noted that this problem belong to the category
of discrete-time stochastic dynamic programming and might be
solved with the backward recursive algorithm based on the
principle of optimality. However, a routine work with this kind of
algorithm leads to complexity in implantation of the algorithm and
increasing of computing loads. In the following, a new algebraic
expression of the dynamic programming will be developed that
enables one to solve the optimization problem in an algebraic
approach and easy-to-programming.

3. Markov process description of stochastic logical dynamics

For convenience of description, the following notations will be
used:

(i) The set of m × n real matrices is denoted by Mm×n.
(ii) Let N ∈ Mm×1 and M ∈ Mm×n. Then [N]i denotes the

ith component of vector N , and Coli(M)(Rowi(M)) denotes the ith
column (row) ofM , respectively.

(iii) δi
s denote the i-column of the identity matrix Is. And set

∆s := {δi
s|i = 1, 2, . . . , s}.

(iv) Amatrix L ∈ Mm×n is called a logical matrix if Col(L) ⊂ ∆m,
where Col(L)denote the set of columns of L. Then any logicalmatrix
L has the form L = [δ

i1
m, δ

i2
m, . . . , δin

m], and briefly is defined as

L = δm[i1, i2, . . . , in].

The set ofm × n logical matrices is denoted by Lm×n.

First, we identify the state space S with ∆s as follows:

xi ∼ δi
s, i = 1, 2, . . . , s. (5)

Then, each state x ∈ S has its corresponding vector form (still use
x) x ∈ ∆s. Similarly, we identify the control space U with ∆r as
follows: uj

∼ δ
j
r , j = 1, 2, . . . , r. Under the above identification,

the per-step cost function g : S × U → R can be expressed in the
form

g(x, u) = xTGu, ∀x ∈ ∆s, u ∈ ∆r ,

with G = (Gi,j)s×r =

g(δi

s, δ
j
r)

s×r , and the terminal cost function

K on S can be represented by a s-dimensional vector K =
K(δ1

s ), . . . , K(δs
s)
T

.

Semi-tensor product of matrices is a generalization of conven-
tional matrix product [17]. It has been successfully used for both
continuous time dynamic systems and discrete time logical dy-
namic system [16], andmany excellent results have been obtained
on calculating fixed points and cycles of Boolean network dynami-
cal system [3], the controllability and observability of Boolean con-
trol networks [2], and other related issues [18–20].

Definition 3.1 ([16]). Let M ∈ Mm×n,N ∈ Mp×q. The semi-tensor
product ofM and N , denoted asM n N , is defined by

M n N := (M ⊗ Is/n)(N ⊗ Is/p), (6)

where s = lcm{n, p} is the least common multiple of n and p; ⊗ is
the Kronecker product.

Remark 3.1. (i) All the properties of conventional matrix product
remain true for this generalization. For example, for any α, β ∈ R,

(1) Distributive rule:

A n (αB + βC) = αA n B + βA n C,
(αB + βC) n A = αB n A + βC n A.

(2) Associative rule: A n (B n C) = (A n B) n C .

(ii) Some special cases are given here to illustrate the definition
of semi-tensor product.

(1) Let x = [x1, x2, . . . , xm] ∈ Rm, y = [y1, y2, . . . , yn] ∈ Rn,
Then, the semi-tensor product x n y is

[x1y1, x2y1, . . . , xmy1, . . . , x1yn, . . . , xmyn] ∈ Rmn.

(2) Let X be a row vector of dimension np, and Y be a column
vector of dimension p. Then we split into p equal-size blocks as
X1, . . . , Xp, which are 1 × n rows. Then, the semi-tensor product
x n y is x n y =

p
i=1 X

iyi ∈ Rn.

Now we represent the Markov process description of the
stochastic logical dynamical system (1). Denote by pij(u) the
transition probabilities from state δi to the next state δj under
control u,

pij(u) = P(xk+1 = δj
s|xk = δi

s, u), (7)

for all δi
s, δ

j
s ∈ ∆s, u ∈ U . It is noticed that the transition probabil-

ities pij(u) satisfy
s

j=1 pij(u) = 1, ∀ i = 1, . . . , s, u ∈ U .

Given a discrete-time evolution system in the form (1)
together with the probability distribution FW {wk|xk, uk} of wk,
we can provide an equivalent Markov process description. The
corresponding transition probability is calculated by

pij(u) = PW

Ωij(u)|δi

s, u

, (8)

where Ωij(u) is the subset of disturbance space Ω,

Ωij(u) = {w : f (δi
s, u, w) = δj

s}, ∀δi
s, δ

j
s ∈ ∆s, u ∈ ∆r . (9)
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