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a b s t r a c t

This paper deals with the numerical approximation to boundary controls that drive the solution to the 1D
linear Schrödinger equation to a prescribed state at a final time. Using ideas fromFursikov and Imanuvilov,
we consider the control that minimizes over the class of admissible controls a functional that involves
weighted integrals, with weights that blow up at T . We will see that this extremal problem is equivalent
to a differential problem that is fourth order in space and second order in time. Adapting some numerical
techniques applied by the first author and Münch to the heat equation, we approximate the variational
formulation by introducing appropriate space–time finite elements that are C1 in space and C0 in time.We
present two approaches; the second one relies on a change of variable which leads to a lower condition
number for the stiffness matrix. The results of some experiments show the efficiency of these methods.

© 2014 Published by Elsevier B.V.

1. Introduction, the null controllability problem

We aremainly concernedwith the boundary exact controllabil-
ity for the 1D linear Schrödinger equation. The state equation is the
following:iyt − yxx + V (x, t)y = 0, (x, t) ∈ (0, 1) × (0, T ),
y(0, t) = u(t), y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1).

(1)

Here, T > 0 andwe assume that y0 ∈ H1
0 ((0, 1); C) and V , Vx ∈

L∞((0, 1) × (0, T ); R). In (1), u ∈ L2((0, T ); C) is the control and
y = y(x, t) is the associated state.

In the sequel, we will use the notation

Ly := iyt − yxx + Vy.

It is well known that, for any u ∈ L2((0, T ); C), problem (1) has
exactly one solution y in the transposition sense, with

y ∈ C0([0, T ];H−1((0, 1); C)) ∩ H−1(0, T ; L2((0, 1); C)), (2)

see for instance [1,2].
Our aim in this paper is to find numerical approximations to

controls u such that the associated solutions to (1) satisfy y(·, T )
= 0. This is called a null controllability problem. In fact, due to the
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time reversibility of the linear Schrödinger equation, the null con-
trollability and the exact controllability properties are equivalent,
whichmeans that we can reach any final state inH−1((0, 1); C) by
the action of a boundary control. From now on, we will investigate
the null controllability problem.

It is known that, for any T > 0, (1) has the null controllability
property. In other words, for any y0 ∈ H1

0 ((0, 1); C), there exist
controls u ∈ L2((0, T ); C) such that the associated states satisfy
y(·, T ) = 0. This was proved in [2] for V ≡ 0 by applying
the so-called Hilbert uniqueness method together with multipliers
techniques. In particular, it was established that the control of
minimal norm in L2((0, T ); C) is given by u = φx(0, ·), where φ
solves a backward Schrödinger problemiφt − φxx = 0, (x, t) ∈ (0, 1) × (0, T ),

φ(x, t) = 0, (x, t) ∈ {0, 1} × (0, T ),

φ(x, T ) = φT (x), x ∈ (0, 1),

with φT in an appropriate space.
The null controllability with a time-independent potential V

has also been established by other methods. Thus, in Lebeau [3],
Hilbert uniqueness was used in combination with microlocal
analysis and extended to higher dimensional Schrödinger systems.
Later, Tataru [4,5] and Triggiani [6] used appropriate Carleman
inequalities to deduce approximate and exact controllability and
stabilizability results. Other proofs of controllability have been
furnished by Horn and Littman [7,8] and Phung [9].

In the present work, we will use some ideas inspired by the
work of Fursikov and Imanuvilov in [10] for similar parabolic
systems. More precisely, let us consider the following extremal
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problem:
Minimize J(y, u) =

1
2


Q

ρ2
|y|2 dx dt

+
1
2

 T

0
ρ1(0, t)2|u|2 dt

Subject to (y, v) ∈ C(y0, T ).

(3)

Here and in the sequel, Q = (0, 1) × (0, T ) and C(y0, T ) is the
linear manifold

C(y0, T ) = {(y, u) ∈ X : y solves (1) and satisfies y(·, T ) = 0}

where

X = L2(Q ; C) × L2((0, T ); C). (4)

We assume that
ρ = ρ(x, t),

ρ1 = ρ1(x, t) are continuous, real-valued and ≥ ρ∗ > 0,
ρ, ρ1 ∈ L∞((0, 1) × (0, T − δ); R) ∀δ > 0,

(5)

so that, in principle, they can blow up as t → T−.
The fact that we search for null controls and associated states

solving (3) can be justified as follows: first, they can serve to select
the ‘‘good’’ control-state pair, according to a previously established
criterion; second, they avoid unpleasant oscillations of the control
as t → T (it is well known that this phenomenon can appear if,
for instance, we simply try to find minimal L2 norm null controls;
see [11]).

The main goal in this paper is to solve the extremal problem (3)
numerically. To this purpose,wewill see that themanifoldC(y0, T )
in (3) is non-empty and (3) possesses exactly one solution.

In the sequel, we will denote by C a positive generic constant
and ⟨· , ·⟩ will stand for the usual duality pairing for H1

0 and H−1.
The paper is organized as follows. In Section 2, we present two

equivalent variational equalities whose solutions p and w furnish
the unique solution to (3); see (13) and (18). We will see that the
pair (y, u) obtained by the Fursikov–Imanuvilov method belongs
to X , which is an interesting additional property, since the natural
regularity for y is (2). In Section 3, these variational equalities are
analyzed numerically. We introduce some families of approximate
problems andwe prove appropriate convergence results. Section 4
deals with the results of some numerical experiments. It is seen
that the proposed strategies are efficient and furnish satisfactory
approximations to the control-state pair (y, u). Finally, some
additional comments are given in Section 5.

2. Variational approaches to the controllability problem

2.1. Preliminaries. A first variational equality

Let us introduce the weights

ρ(x, t) ≡ exp


α(x)
T − t


, ρ0(x, t) ≡ ρ(x, t)(T − t)3/2,

ρ1(x, t) ≡ ρ(x, t)(T − t)1/2, ρ2(x, t) ≡ ρ(x, t)(T − t)−3/2,

(6)

where

α(x) = K1(eK2 − eβ0(x)), β0(x) ≡ β00(1 − x), K1 > 0,
K2 > β00 > 0. (7)

Obviously, ρ and ρ1 satisfy (5). Let us consider the extremal
problem (3). The roles of ρ and ρ0 are clarified by the following
arguments and results.

Let us set

P0 = {q ∈ C2(Q : C) : q = 0 on {0, 1} × [0, T ]}.

In this linear space, the sesquilinear form

(p, q)P =


Q

ρ−2Lp Lq dx dt +

 T

0
ρ−2
1 (0, t)px(0, t) qx(0, t) dt,

is an inner product. This is a consequence of the unique continua-
tion property for the Schrödinger equation; see [1,12].

Let P be the completion of the space P0 for the previous inner
product. Then, P is a Hilbert space and the following result holds.

Lemma 1. There exist positive (sufficiently large) constants K1, K2
and C0 such that one has

Q
ρ−2
2 |iqt − qxx|2 dx dt +


Q

ρ−2
0 |q|2 dx dt

≤ C0


Q

ρ−2
|Lq|2 dx dt +

 T

0
ρ−2
1 |qx(0, t)|2 dt


(8)

for all q ∈ P.

Proof. We can argue as in the proofs of Proposition 1 and Theo-
rem 2 in [1]. Thus, let us introduce the weights

ζ (x, t) ≡ exp


α(x)
t(T − t)


, ζ0(x, t) ≡ ζ (x, t)(t(T − t))3/2,

ζ1(x, t) ≡ ζ (x, t)(t(T − t))1/2,
ζ2(x, t) ≡ ζ (x, t)(t(T − t))−3/2.

We have the following for sufficiently large K1, K2, C and C0:
Q

ζ−2
2 |iqt − qxx|2 dx dt +


Q

ζ−2
1 |qx|2 dx dt

+


Q

ζ−2
0 |q|2 dx dt

≤ C


Q
ζ−2

|Lq|2 dx dt +

 T

0
ζ−2
1 |qx(0, t)|2 dt


≤ C0


Q

ρ−2
|Lq|2 dx dt +

 T

0
ρ−2
1 |qx(0, t)|2 dt


. (9)

On the other hand, the usual estimates for the solutions to the
Schrödinger equation show that

(0,1)×(0,T/2)
|q|2 dx dt

≤ C


Q
ζ−2
0 |q|2 dx dt +


(0,1)×(0,T/2)

|Lq|2 dx dt


and, taking into account that iqt − qxx = Lq − Vq, we also have
(0,1)×(0,T/2)

|iqt − qxx|2 dx dt

≤ C


Q
ζ−2
0 |q|2 dx dt +


(0,1)×(0,T/2)

|Lq|2 dx dt


.

As a consequence, we get (8) for eventually larger constants K1, K2
and C0. �

As a consequence of Lemma 1, we obtain the following propo-
sition.

Proposition 1. There exists a unique solution p ∈ P to the problem


Q
ρ−2Lp Lq dx dt +

 T

0
ρ−2
1 px(0, t) qx(0, t) dt

= i⟨y0, q(· , 0)⟩
∀q ∈ P; p ∈ P.

(10)
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