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This paper deals with the numerical approximation to boundary controls that drive the solution to the 1D
linear Schrédinger equation to a prescribed state at a final time. Using ideas from Fursikov and Imanuvilov,
we consider the control that minimizes over the class of admissible controls a functional that involves
weighted integrals, with weights that blow up at T. We will see that this extremal problem is equivalent
to a differential problem that is fourth order in space and second order in time. Adapting some numerical

techniques applied by the first author and Miinch to the heat equation, we approximate the variational
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formulation by introducing appropriate space-time finite elements that are C' in space and C° in time. We
present two approaches; the second one relies on a change of variable which leads to a lower condition
number for the stiffness matrix. The results of some experiments show the efficiency of these methods.
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1. Introduction, the null controllability problem

We are mainly concerned with the boundary exact controllabil-
ity for the 1D linear Schrédinger equation. The state equation is the
following:

iy —yx+ Vi, t)y=0, (x,t) € (0,1) x (0,T),
{y(O, t)y=u(t), y(1,t)=0, te(0,T), (1)
y(x,0) = yo(x), x € (0,1).

Here, T > 0and we assume thatyg € H(}((O, 1);C)andV, V, €
L%°((0, 1) x (0, T); R).In (1), u € L*((0, T); C) is the control and
y = y(x, t) is the associated state.

In the sequel, we will use the notation

Ly =iy — Y + Vy.

It is well known that, for any u € [*((0, T); C), problem (1) has
exactly one solution y in the transposition sense, with

y € C°([0, TI; HT'((0, 1); ©)) NH™'(0, T; L*((0, 1); C)), 2)

see for instance [1,2].

Our aim in this paper is to find numerical approximations to
controls u such that the associated solutions to (1) satisfy y(-, T)
= 0. This is called a null controllability problem. In fact, due to the
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time reversibility of the linear Schrodinger equation, the null con-
trollability and the exact controllability properties are equivalent,
which means that we can reach any final state in H~1((0, 1); C) by
the action of a boundary control. From now on, we will investigate
the null controllability problem.

It is known that, for any T > 0, (1) has the null controllability
property. In other words, for any y, € H(}((O, 1); C), there exist
controls u € I[%((0, T); C) such that the associated states satisfy
y(-,T) = 0. This was proved in [2] for V = 0 by applying
the so-called Hilbert uniqueness method together with multipliers
techniques. In particular, it was established that the control of
minimal norm in L?((0, T); C) is given by u = ¢(0, -), where ¢
solves a backward Schrédinger problem

i — ¢ =0,  (x,1) €(0,1) x(0,T),
P(x, 1) =0, (x,t) €{0,1} x (0, T),

d(x,T)=¢"(x), x€(0,1),

with ¢7 in an appropriate space.

The null controllability with a time-independent potential V
has also been established by other methods. Thus, in Lebeau [3],
Hilbert uniqueness was used in combination with microlocal
analysis and extended to higher dimensional Schrédinger systems.
Later, Tataru [4,5] and Triggiani [6] used appropriate Carleman
inequalities to deduce approximate and exact controllability and
stabilizability results. Other proofs of controllability have been
furnished by Horn and Littman [7,8] and Phung [9].

In the present work, we will use some ideas inspired by the
work of Fursikov and Imanuvilov in [10] for similar parabolic
systems. More precisely, let us consider the following extremal
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problem:
o« . . 1 2 2
Minimize J(y, u) = 3 Pyl dxdt
Q

1 T
+3 [ m. 07k d )
2 Jo
Subject to (y, v) € C(yo, T).

Here and in the sequel, Q = (0, 1) x (0, T) and C(yg, T) is the
linear manifold

C(o,T) = {(y,u) € X : ysolves (1) and satisfies y(-, T) = 0}

where
X =1*(Q: C) x I*((0,T); ©). (4)
We assume that
p=pxt),
p1 = p1(x, t) are continuous, real-valued and > p, > 0, (5)
P, p1 € L7((0,1) x (0,T —8); R) Vé >0,

so that, in principle, they can blowupast — T—.

The fact that we search for null controls and associated states
solving (3) can be justified as follows: first, they can serve to select
the “good” control-state pair, according to a previously established
criterion; second, they avoid unpleasant oscillations of the control
ast — T (it is well known that this phenomenon can appear if,
for instance, we simply try to find minimal L?> norm null controls;
see [11]).

The main goal in this paper is to solve the extremal problem (3)
numerically. To this purpose, we will see that the manifold € (yq, T)
in (3) is non-empty and (3) possesses exactly one solution.

In the sequel, we will denote by C a positive generic constant
and (-, -) will stand for the usual duality pairing for H(} and H™ ',

The paper is organized as follows. In Section 2, we present two
equivalent variational equalities whose solutions p and w furnish
the unique solution to (3); see (13) and (18). We will see that the
pair (y, u) obtained by the Fursikov-Imanuvilov method belongs
to X, which is an interesting additional property, since the natural
regularity for y is (2). In Section 3, these variational equalities are
analyzed numerically. We introduce some families of approximate
problems and we prove appropriate convergence results. Section 4
deals with the results of some numerical experiments. It is seen
that the proposed strategies are efficient and furnish satisfactory
approximations to the control-state pair (y,u). Finally, some
additional comments are given in Section 5.

2. Variational approaches to the controllability problem

2.1. Preliminaries. A first variational equality

Let us introduce the weights

,O(X, t) = exp (%) ) IOO(X5 t) = IO(X5 t)(T - t)3/27
p1(x, t) = p(x, O)(T — )'/2,
where
a(x) = Ki(e2 —eP®), By(x) = Boo(1—x), Ky > 0,

Kz > ﬂoo > 0. (7)

(6)
p2(x, t) = p(x, O)(T — £)~*2,

Obviously, p and p; satisfy (5). Let us consider the extremal
problem (3). The roles of p and p, are clarified by the following
arguments and results.

Let us set

Po={geC*Q:C):q=00n{0,1} x [0, T]}.

In this linear space, the sesquilinear form

T
. r = f f p2LpTqdxdt + / pr2(0, Opx(0, £) (0, D) dt,
Q 0

is an inner product. This is a consequence of the unique continua-
tion property for the Schrédinger equation; see [1,12].

Let P be the completion of the space P, for the previous inner
product. Then, P is a Hilbert space and the following result holds.

Lemma 1. There exist positive (sufficiently large) constants Ky, K,
and Cy such that one has

// P;2|iQt_Qxx|2dde+f/ 0o *1ql* dx dt
Q Q
T
-2 2 -2 2
=G ([fﬂ ILgl dxdt—i—/ 07 16x(0, 1) dt) (8)
Q 0

forallq € P.

Proof. We can argue as in the proofs of Proposition 1 and Theo-
rem 2 in [1]. Thus, let us introduce the weights

a(x)

L(x,t) =exp (t(T s

G(x, 1) = ¢(x, DT — )2,
L, 0) = £, 0T — )2,
We have the following for sufficiently large Ki, K>, C and Cy:

// 4;2|iqt—qxx|2dxdt+// ¢y 21yl dx dt
Q Q
+// ¢ 2lql* dxdt
Q
T
< c(// ;*2|Lq|2dxdt+/ £72 1ax 0, t)|zdr)
Q 0

T
=G (// p—ZILCI|2dth+/ 72 1640, t)lzdt>, ©)
Q 0

On the other hand, the usual estimates for the solutions to the
Schrédinger equation show that

// lq|? dx dt
(0,1)x(0,T/2)
§C<// §(,’2|q|2dxdt+f/ |Lq|2dxdt>
Q 0,1)%(0,T/2)

and, taking into account that iq; — g = Lg — Vq, we also have

f/ ligy _QXx|2 dx dt
(0,1)x(0,T/2)
<C <// ;(;2|q|2dxdt+ff |Lq|2dxdt>.
Q (0,1)x(0,T/2)

As a consequence, we get (8) for eventually larger constants Ky, K>
and G,. O

) . Lo ) =L, DT — )Y

As a consequence of Lemma 1, we obtain the following propo-
sition.

Proposition 1. There exists a unique solution p € P to the problem

T
f/ p‘szdedtvL/ p12px(0, 1) qx(0, 1) dt
Q 0

=i{yo, q(-, 0))
YqeP; peP.

(10)
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