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a b s t r a c t

The norm-optimal iterative learning control (ilc) algorithm for linear systems is extended to an
estimation-based norm-optimal ilc algorithm where the controlled variables are not directly available
as measurements. A separation lemma is presented, stating that if a stationary Kalman filter is used for
linear time-invariant systems then the ilc design is independent of the dynamics in the Kalman filter.
Furthermore, the objective function in the optimisation problem is modified to incorporate the full prob-
ability density function of the error. Utilising the Kullback–Leibler divergence leads to an automatic and
intuitiveway of tuning the ilc algorithm. Finally, the concept is extended to non-linear state spacemodels
using linearisation techniques, where it is assumed that the full state vector is estimated and used in the
ilc algorithm. Stability and convergence properties for the proposed scheme are also derived.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The iterative learning control (ilc)method [1,2] improves perfor-
mance, for instance trajectory tracking accuracy, for systems that
repeat the same task several times. ilc for non-linear systems has
been considered in e.g. Avrachenkov [3]; Lin et al. [4]; Xiong and
Zhang [5],where the ilc algorithm is formulated as the solution to a
non-linear system of equations. Traditionally, a successful ilc con-
trol law is based on direct measurements of the control quantity.
However, when the control quantity is not directly available as a
measurement, the controller must estimate the control quantity
fromothermeasurements, or rely onmeasurements that indirectly
relate to this quantity.

ilc in combination with estimation of the control quantity, has
not been given much attention in the literature. InWallén et al. [6]
it is shown that the performance of an industrial robot is signifi-
cantly increased when an estimate of the control quantity is used
instead of measurements of a related quantity. Performance of the
ilc algorithm when combined with an estimator has previously
been addressed in Axelsson et al. [7]. A related topic has been cov-
ered in Ahn et al. [8]; Lee and Lee [9], where a state space model
in the iteration domain is formulated for the error signal, and a
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kf is used for estimation. The difference to this paper is that in Ahn
et al. [8]; Lee and Lee [9], it is assumed that the control error is
measured directly, hence the kf is merely a low-pass filter, with
smoothing properties, for reducing the measurement noise.

Here, the estimation-based ilc framework, where the control
quantity is not directly available as a measurement, is combined
with an ilc design based on an optimisation approach, referred to
as norm-optimal ilc [10]. The estimationproblem is formulatedus-
ing recursive Bayesian methods. Extensions to non-linear systems,
utilising linearisation techniques, are also presented. The contribu-
tions are summarised as

1. A separation lemma, stating that the extra dynamics introduced
by the stationary kf is not necessary to include in the design of
the ilc algorithm.

2. Extension of the objective function to include the full probability
density function (pdf) of the estimated control quantity, utilis-
ing the Kullback–Leibler divergence. This provides an automatic
and intuitive choice for one of the weights in the norm-optimal
ilc algorithm.

3. Extensions to non-linear systems, including stability and con-
vergence properties.

2. Iterative Learning Control (ILC)

The ilc-method improves the performance of systems that re-
peat the same taskmultiple times. The systems can be open loop as
well as closed loop, with internal feedback. The ilc control signal
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uk+1(t) ∈ Rnu for the next iteration k + 1 at discrete time t is cal-
culated using the error signal and the ilc control signal, both from
the current iteration k. Different types of update algorithms can be
found in e.g. Moore [2].

One design method is the norm-optimal ilc algorithm [10,11].
The method solves

minimise
uk+1(·)

N−1
t=0

∥ek+1(t)∥2
We + ∥uk+1(t)∥2

Wu

subject to
N−1
t=0

∥uk+1(t) − uk(t)∥2
≤ δ,

(1)

where ek+1(t) = r(t) − zk+1(t) is the error, r(t) the reference
signal, and zk+1(t) the controlled quantity. ThematricesWe ∈ Snz

++,
andWu ∈ Snu

++ are weight matrices, used as design parameters, for
the error and the ilc control signal, respectively.1

Using a Lagrange multiplier and a batch formulation (see
Appendix A) of the system from uk+1(t) and r(t) to zk+1(t) gives
the solution
ūk+1 = Q · (ūk + L · ēk) (2a)

Q = (TT
zuW eTzu + Wu + λI)−1(λI + TT

zuW eTzu) (2b)

L = (λI + TT
zuW eTzu)

−1TT
zuW e, (2c)

where λ is a design parameter and

W e = IN ⊗ We ∈ SNnz
++, Wu = IN ⊗ Wu ∈ SNnu

++, (3)
IN is the N × N identity matrix, ⊗ denotes the Kronecker product,
Tzu is the batch model from u to z, and ēk = r̄ − z̄k. The reader
is referred to Amann et al. [10]; Gunnarsson and Norrlöf [11] for
details of the derivation.

Under the assumption that there are no model uncertainties or
noise present, the update Eq. (2a) is stable and monotone for all
system descriptions Tzu, i.e., the batch signal ū converges to a con-
stant value monotonically, see e.g. Barton et al. [12]; Gunnarsson
and Norrlöf [11].

3. Estimation-based ILC for linear systems

The error ek(t) used in the ilc algorithm should be the differ-
ence between the reference r(t) and the controlled variable zk(t)
at iteration k. In general the controlled variable zk(t) is not directly
measurable, therefore an estimation-based ilc algorithm must be
used, i.e., the ilc algorithm has to rely on estimates based on mea-
surements of related quantities. The situation is schematically de-
scribed in Fig. 1.

3.1. Estimation-based norm-optimal ILC

A straightforward extension to the standard norm-optimal
ilc method is to use the error êk(t) = r(t) − ẑk(t) in the equa-
tions from Section 2, where ẑk(t) is an estimate of the controlled
variable. The estimate ẑk(t) can be obtained using e.g., a Kalman
filter (kf) for the linear case, or an extended Kalman filter (ekf) for
the non-linear case [13]. Linear systems are covered in this sec-
tion while Section 4 extends the ideas to non-linear systems. In
both cases itmust be assumed that (i) the system is observable, and
(ii) the filter, used for estimation, converges.

The solution to the optimisation problem can be obtained in
a similar way as for the standard norm-optimal ilc problem in
Section 2, where the detailed derivation is presented in Amann
et al. [10]; Gunnarsson and Norrlöf [11]. An important distinc-
tion, compared to standard norm-optimal ilc, relates towhatmod-
els are used in the design. In the estimation-based approach, the

1 Sn
++

denotes a n × n positive definite matrix.

Fig. 1. System T with reference r(t), ilc input uk(t), measured variable yk(t) and
controlled variable zk(t) at ilc iteration k and time t .

model from uk+1(t) and r(t) to ẑk+1(t) is used, i.e., the dynamics
from the kfmust be included, while in the standard norm-optimal
design, the model from uk+1(t) and r(t) to zk+1(t) is used.

Let the discrete-time state space model be given by

xk(t + 1) = A(t)xk(t) + Bu(t)uk(t) + Br(t)r(t) + G(t)wk(t), (4a)
yk(t) = Cy(t)xk(t) + Dyu(t)uk(t) + Dyr(t)r(t) + vk(t), (4b)

zk(t) = Cz(t)xk(t) + Dzu(t)uk(t) + Dzr(t)r(t), (4c)

where the process noisew(t) ∼ N (0,Q(t)), and themeasurement
noise v(t) ∼ N (0,R(t)). A batch model (see Appendix A for defi-
nitions) for the output yk and the estimate ẑk can be written as

ȳk = Cy8x0 + Tyuūk + Tyrr̄, (5a)

ˆ̄zk = Cz8x̂0 + Tẑuūk + Tẑrr̄ + Tẑyȳk, (5b)

where w(t) and v(t) are replaced by the corresponding expected
values, which are both equal to zero, in the output model (5a). The
kf batch formulation has been used in the model of the estimate
in (5b). The optimal solution is now given by

ūk+1 = Q · (ūk + L · ˆ̄ek) (6a)

Q = (TT
uW eTu + Wu + λI)−1(λI + TT

uW eTu) (6b)

L = (λI + TT
uW eTu)

−1TT
uW e, (6c)

where Tu = Tẑu + TẑyTyu (see (A.6), (A.10) for details), and ˆ̄ek =

r̄ − ˆ̄zk. The expressions for Q and L in (6) are similar to (2). The
only difference is that Tu is used instead of Tzu. Theorem 1 presents
a result for the special case of lti-systems using the stationary kf.2

Theorem 1 (Separation Lemma for Estimation-Based ilc). Given an
lti-system and the stationary kf with constant gain matrix K, then
the matrices Tu and Tzu are equal, hence the ilc algorithm (2) can be
used for the estimation-based norm-optimal ilc.

Proof. Assume that Dyu = 0 and Dzu = 0, then it holds that Tzu =

Cz9Bu and Tu = Cz9 Bu + Cz92KCy9Bu, see Appendix A. The
structure of Bu gives

Tu = Cz
9Γ + 92KCy9


Bu,

0 = diag(I − KCy, . . . , I − KCy,0).

It can nowbe shownalgebraically that9Γ +92KCy9 = 9, hence
Tzu = Tu. The case Dyu ≠ 0 and Dzu ≠ 0 gives similar, but more
involved, calculations. �

The result from Theorem 1makes it computationally more effi-
cient to compute the matrices Q and L, since the matrix Tzu re-
quires fewer calculations to obtain, compared to the matrix Tu.
Even if the iterative kf update is used, the Kalman gainK converges

2 The stationary Kalman filter uses a constant gain K which is the solution to an
algebraic Riccati equation, see Kailath et al. [13].
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