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a b s t r a c t

We consider the classic problem of exact output regulation for a linear time invariant plant. Under the
assumption that either a state feedback or measurement feedback output regulator exists, we give design
methods to obtain a regulator that avoids overshoot and undershoot in the transient response.
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1. Introduction

The problem of output regulation is central to modern control
theory. The basic problem considers a multivariable linear time in-
variant (LTI) plant that is subject to known external disturbances,
and which is desired to track a known reference signal. The ref-
erence signals and external disturbances are modelled by two in-
dependent exosystems. The aim of the problem is to design a
feedback controller which internally stabilises the plant while
rejecting the disturbances and ensuring the output converges
asymptotically to the desired reference signal. The problem has
a long history, and extensive compilations of results are given in
[1,2].

A special case of the output regulation problem is that of de-
signing a control law to ensure the plant output takes a known
constant reference value, and also exhibits a desirable transient
response, in particular the absence of overshoot or undershoot.
Much of the literature for this problem has concerned single-
input single-output systems (SISO). Darbha and Bhattacharyya [3]
showed how to design a two parameter feedback controller for an
LTI continuous-time plant that renders the step response nonover-
shooting. Bement and Jayasuriya [4] gave an eigenvalue assign-
ment method to obtain a nonovershooting LTI state feedback
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controller for continuous-time plants with one nonminimum
phase zero. In [5] conditions are given for the existence of a con-
troller to achieve a sign invariant impulse response, and hence also
a nonovershooting step response. However such an approach is in-
herently conservative, because a sign invariant impulse response
(and hence also a monotonic step response) is not necessary to
avoid undershoot or overshoot.

To date there have been few papers offering analysis or de-
sign methods for undershoot or overshoot in the step response
of multi-input multi-output (MIMO) systems. A recent contribu-
tion in this area is [6], which gave conditions under which a state
feedback controller could be obtained to yield a nonovershoot-
ing step response for LTI MIMO systems; this design method is
applicable to nonminimum phase systems, and could be applied
to both continuous-time and discrete-time systems. In [7] it was
shown that the state feedback law can be implemented in con-
junction with a dynamic observer; the nonovershooting property
was seen to be preserved if the initial observer error is sufficiently
small. In [8] the design method of [6] was modified to achieve a
step response for MIMO systems that is both nonovershooting and
nonundershooting.

For the general problem of exact output regulation, there have
been only a few papers offering design methods to deliver a de-
sirable transient response. Saberi et al. [9] gave a general frame-
work for optimising transient performance in regulation problems.
By defining a performance index involving the energy of the er-
ror signal, they introduced several optimal and suboptimal control
problems to find control laws that achieve output regulation and
also obtain the infimum of this performance index. The authors
noted that in some problems it was necessary to employ high-gain
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Fig. 1. Output feedback control architecture.

feedback controllers.More recently, Zhang and Lan [10] considered
output regulation for SISO systems and employed the composite
nonlinear feedback (CNF) technique of [11,12] to obtain a nonlin-
ear state feedback control law that offered improved transient re-
sponse, relative to that achievable with a linear control law. We
note however that neither the methods of [9] nor [10] were able
to avoid overshoot or undershoot in the transient response of the
tracking signal.

In this paper we seek to adapt the multivariable design meth-
ods of [6,8] to the general problem of exact output regulation. We
assume that the problem of output regulation by state feedback is
solvable, i.e. there exists a linear state feedback controller that in-
ternally stabilises the plant and achieves output regulation. In this
case we show that if there exists a state feedback controller that
yields a nonovershooting response for a step reference, then a state
feedback output regulator can be obtained to deliver a nonover-
shooting output regulation. Secondly, for the problem of output
regulation by measurement feedback, we show that if the prob-
lem is solvable and if there exists a dynamic observer that yields
a nonovershooting response for a constant step reference, then a
measurement feedback output regulator can be found to deliver
nonovershooting output regulation. To the best of the authors’
knowledge, this is the first design method that achieves multivari-
able exact output regulation with a nonovershooting (or nonun-
dershooting) transient response.
Notation. Throughout this paper, the symbol 0n represents the zero
vector of length n, and In is the n-dimensional identity matrix. For
a squarematrix A, we use σ(A) to denote its spectrum.We say that
a squarematrix A isHurwitz-stable if σ(A) lies within the open left-
hand complex plane, and it is anti-Hurwitz-stable if σ(A) lieswithin
the open right-hand complex plane. For any real or complex scalar
λ and vector v, we say that (λ, v) form an eigenpair of a squarema-
trix A if Av = λv. For any matrix A with 2n rows, we define π{A}

andπ{A} by taking the upper n and lower n rows of A, respectively.
If α is a vector of length n, we use diag(α) to denote the n × n di-
agonal matrix whose leading diagonal contains the entries of α.

2. Problem formulation

We consider a linear multivariable plant ruled by the equation

Σ :

ẋ(t) = A x(t) + B u(t) + H d(t)
y(t) = Cy x(t) + Dy u(t) + Gy d(t)
z(t) = C x(t) + D u(t)

(1)

where, for all t ≥ 0, the signal x(t) ∈ Rn represents the state,
u(t) ∈ Rm represents the control input, y(t) ∈ Rp represents
the measured output, z(t) ∈ Rq represents the controlled output,
r(t) ∈ Rρ represents a reference signal and d(t) ∈ Rδ represents
a disturbance signal, as shown in Fig. 1. All the matrices appearing
in (1) are appropriate dimensional constant matrices.

The disturbance input d and the reference input r are generated
by two autonomous exosystems ruled respectively by

Σexo,1 :


η̇(t) = S1 η(t), η(0) = η0
d(t) = L1 η(t) and

Σexo,2 :


ζ̇ (t) = S2 ζ (t), ζ (0) = ζ0
r(t) = L2 ζ (t)

where, for all t ≥ 0, η(t) ∈ Rn1 and ζ (t) ∈ Rn2 , and S1, S2, L1, L2
are also appropriate dimensional constant matrices. We assume
that all the eigenvalues of S1 and S2 are anti-Hurwitz-stable,
i.e., they all have non-negative real part. This assumption does not
cause any loss of generality, see [2, p. 18]; indeed, if the closed-loop
system (excluding the exosystems) is internally stable, the vanish-
ingmodes of the exosystem do not affect the regulation of the out-
put. We also assume that the states of the exosystems η and ζ are
measurable, i.e., they are available to be used to generate a feed-
forward action in the control law.

We design a controller with measurement signal y which gen-
erates the control input signal u. Our design objective is for the ref-
erence signal r to be asymptotically tracked by the output z of the
system, while minimising or eliminating the effect of the distur-
bance. As such, by defining the error signal

e(t) def
= z(t) − r(t),

our objective is to achieve limt→∞ e(t) = 0. We then consider a
new system Σe obtained from Σ by considering the new output e
instead of z:

Σe :

ẋ(t) = A x(t) + B u(t) + H d(t), x(0) = x0
y(t) = Cy x(t) + Dy u(t) + Gy d(t)
e(t) = C x(t) + D u(t) − r(t).

It is convenient to incorporate the two exosystems into a single ex-
osystem whose state w is defined as

w(t) def
=


η(t)
ζ (t)


so that

Σexo :


ẇ(t) = S w(t), w(0) = w0
d(t)
r(t)


=


L1 0
0 L2


w(t)

where S =


S1 0
0 S2


. By defining

Ew
def
=


H L1 0


Dyw

def
=


Gy L1 0


Dew

def
=


0 −L2


we can re-write Σe as

Σe :


ẋ(t) = A x(t) + B u(t) + Ew w(t), x(0) = x0
ẇ(t) = S w(t), w(0) = w0
y(t) = Cy x(t) + Dy u(t) + Dyw w(t)
e(t) = Ce x(t) + Deu u(t) + Dew w(t).

(2)

In order to avoid issues of well-posedness of output dynamic ar-
chitectures, and in order to simplify the derivations of the tracking
control law, we assume Dy = 0. This assumption does not lead
to a significant loss of generality, as shown in [2, p. 16]. For de-
sign purposes we will also consider the nominal plant Σnom which
arises when both exosystems are excluded from consideration. In
this case Σe simplifies to the homogeneous system

Σnom :


˙̃x(t) = A x̃(t) + B ũ(t), x̃(0) = x̃0
ẽ(t) = Ce x̃(t) + Deu ũ(t).

(3)

For this system, the problem of exact output regulation consists
of driving the system state to the origin from some arbitrary non-
zero initial condition. In later sections we will consider control
methodologies that regulate the nominal plant with desirable
transient performance, and then consider the conditions under
which these control methods can also be used to achieve the
same desirable transient performance when applied to Σe. Next



Download English Version:

https://daneshyari.com/en/article/7151800

Download Persian Version:

https://daneshyari.com/article/7151800

Daneshyari.com

https://daneshyari.com/en/article/7151800
https://daneshyari.com/article/7151800
https://daneshyari.com

