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a b s t r a c t

The problem of H∞ filter design for continuous-time nonlinear polynomial systems is addressed in this
paper. The aim is to design a full order dynamic filter that depends polynomially on the filter states. The
strategy relies on the use of a quadratic Lyapunov function and an inequality condition that assures anH∞

performance bound for the augmented polynomial system, composed by the original system and the filter
to be designed, in a regional (local) context. Then, by using Finsler’s lemma, an enlarged parameter space
is created, where the Lyapunov matrix appears separated from the system matrices in the conditions.
Imposing structural constraints to the decision variables and fixing some values for a scalar parameter,
design conditions for theH∞ filter can be obtained in terms of linearmatrix inequalities. As illustrated by
numerical experiments, the proposed conditions can improve theH∞ performance provided by standard
linear filtering by including the polynomial terms in the filter dynamics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The filtering problem for linear systems has received a lot of
attention in the last years. In the literature, sufficient conditions
for the existence of full order filters for uncertain linear systems
assuring prescribed H2 or H∞ bounds based on Linear Matrix In-
equalities (LMIs) certified through quadratic stability [1–4], pa-
rameter dependent Lyapunov functions [5–7] and, more recently,
Lyapunov functionswith polynomial dependence of degree greater
than one [8,9] can be found. In contrast, there are very few results
concerned with filter design for systems subject to nonlinearities.
In [10] the nonlinearities are assumed to satisfy global Lipschitz
conditions and, then, a linear filter is designed by means of LMIs.
In [11] a linear H∞ filter is proposed for a class of nonlinear sys-
tems described by a differential–algebraic representation and [12]
tackles the problemof central suboptimalH∞ filter design for non-
linear polynomial systems. By applying sum-of-squares (SOS) ap-
proaches, [13] proposes a convergent iterative algorithm to solve
the problem of linear H∞ filters for polynomial systems and [14]
addressed the problem of fault detection filter design for nonlinear
polynomial plants. In most cases, despite the fact that the system
has a nonlinear dynamic model, the implemented filter is linear.
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As another aspect of the problem, it is important to underline
that the characterization of an estimate of the basin of attraction of
the origin for a nonlinear system is a challenging problem [15,16].
Actually, the global stability of the origin can hardly be certified
for nonlinear systems in general [17,18]. In [19,20], sufficient con-
ditions for state feedback or observed based control design for
quadratic systems are proposed. Additionally, a method to esti-
mate the region of attraction starting from a polytope in the state
space is also provided. See, also, the recent work [21] dealing with
the convex computation of a region of attraction for polynomial
systems based on the use of the theory of moments.

In this paper the problem of H∞ filtering for continuous-time
nonlinear polynomial systems, i.e., systems whose dynamics de-
pend polynomially on the states, is considered. The filter we want
to design has the same structure as the system, i.e., it is a full or-
der dynamic filter with polynomial terms. Firstly, using a quadratic
Lyapunov function and LMI based techniques, a sufficient condi-
tion that assures an H∞ bound to the dynamics of the error sys-
tem, i.e., the original polynomial system and the proposed filter, in
a regional (local) context is obtained. This condition can be viewed
as an adaptation of recent results of [22] for state feedback control
of saturated quadratic systems. Then, by using Finsler’s lemma and
imposing structural constraints to the decision variables, quasi-
LMI conditionswith a scalar parameter are proposed for the design
of the matrices of the polynomial filter assuring an H∞ bound to
the error dynamic system. As illustrated by the numerical experi-
ments, the proposed condition can provide polynomial filters that
achieve less conservative H∞ bounds when compared to standard
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linear filters. An earlier conference version of the present paper,
dealing with the design of quadratic filters for quadratic systems,
appeared in [23]. Therefore, the present paper can be viewed as a
generalization of [23] to cope with the case of polynomial filters.

The paper is organized as follows. Section 2 presents the system
under consideration and the problemwe intend to solve. Section 3
provides some preliminary results. Themain results are developed
in Section 4. Section 5 is dedicated to numerical experiments that
illustrate the advantages of the proposedmethod. Finally, Section 6
concludes the paper.

Notation. The elements of a matrix A ∈ Rm×n are denoted by
A(i,j), i = 1, . . . ,m, j = 1, . . . , n. A(i) denotes the ith row of matrix
A. For two symmetric matrices of same dimensions A and B, A > B
(A ≥ B) means that A − B is positive definite (positive semi-
definite). For matrices or vectors (′) indicates transpose. Matrix
He(Z) = Z + Z ′ is used to simplify the developments. The block-
diagonal matrix obtained from vectors is expressed by diag(x1,
. . . , xn). Similarly, the block-diagonal matrix obtained frommatri-
ces, by diag(X1, . . . , Xn). L2 represents the Hilbert space of com-
plex signals with finite energy. Identity matrices are denoted by I
and null matrices are denoted by 0 of appropriate dimensions. The
symbol ⋆ means a symmetric block in matrices.

2. Problem statement

Consider the polynomial nonlinear system of degree g

ẋ = Ax + Ã2x2 + Ã3x3 + · · · + Ãgxg + B1w

z = C11x + C̃12x2 + C̃13x3 + · · · + C̃1gxg + D11w

y = C21x + C̃22x2 + C̃23x3 + · · · + C̃2gxg + D21w

(1)

where x ∈ Rn is the state vector, z ∈ Rp is the signal to be
estimated, y ∈ Rq is the measured output and w ∈ Rr is the
noise input. The signalw is supposed to be energy bounded, that is
w ∈ L2. Without loss of generality we assume that the signal w is
L2-normalized, that is, it satisfies:

∥w∥
2
2 =


∞

0
w(τ)′w(τ)dτ ≤ 1. (2)

The matrices that describe the system have the following dimen-
sions: A ∈ Rn×n, B1 ∈ Rn×r , C11 ∈ Rp×n, D11 ∈ Rp×r , C21 ∈ Rq×n,
D21 ∈ Rq×r .

Let us present some ingredients in order to write system (1) in
another form. The vectors xi, i = 1, . . . , g , represent the vectors
with homogeneous terms of degree i, ordered as

xi =


x1x(1)i−1

x2x(2)i−1

...

x(n)i

 (3)

with x0 = 1 and x(i) =

xi . . . xn

′, where xj, j = 1, . . . , n, are
the components of vector x. Then we have xi ∈ Rσi , Ãi ∈ Rn×σi ,
C̃1i ∈ Rp×σi and C̃2i ∈ Rq×σi , i = 1, . . . , g , with σi given by

σi =
(i + n − 1)!
i!(n − 1)!

. (4)

The equivalent representations of terms of degree i are given by

Ãixi = AiXixi−1, C̃1ixi = C1iXixi−1, C̃2ixi = C2iXixi−1 (5)

with

Xi =


x 0 · · · 0
0 x · · · 0
...

...
. . .

...
0 0 · · · x

 ∈ Rnσi−1×σi−1 (6)

where Ai ∈ Rn×nσi−1 , C1i ∈ Rp×nσi−1 and C2i ∈ Rq×nσi−1 . System (1)
can then be written as follows

ẋ = (A + A2X2)x + (A3X3)x2 + · · · + (AgXg)xg−1
+ B1w

z = (C11 + C12X2)x + (C13X3)x2 + · · · + (C1gXg)xg−1
+ D11w

y = (C21 + C22X2)x + (C23X3)x2 + · · · + (C2gXg)xg−1
+ D21w.

(7)

The choice of matrices Ai, C1i and C2i is not unique because the
vector ϕi = Xixi−1 presents repeated elements. Matrices Ii ∈

Rnσi−1×σi , satisfying Xixi−1
= Iixi define the relation between ϕi =

Xixi−1 and xi. An algorithm to construct thematrices Ii is presented
in [24,18]. Let us define vector φ containing xi, i = 1, . . . , g − 1, as

φ =

x′ x2′ . . . xg−1′′

∈ Rσt (8)

with

σt =

g−1
i=1

σi. (9)

Then one has

ẋ =

A + A2X2 A3X3 . . . AgXg


φ + B1w

z =

C11 + C12X2 C13X3 . . . C1gXg


φ + D11w

y =

C21 + C22X2 C23X3 . . . C2gXg


φ + D21w.

(10)

The aim of this work is to find a full-order stable polynomial
filter described as

ẋf = Ãf xf + Ãf 2x2f + Ãf 3x3f + · · · + Ãfgx
g
f + Bf y

zf = Cf xf + Df y
(11)

with nf = n, Ãf ∈ Rnf ×nf , Bf ∈ Rnf ×q, Cf ∈ Rp×nf , Df ∈ Rp×q,
xf ∈ Rnf the estimated state and zf ∈ Rp the estimated output. xif
represents the vectorwith homogeneous terms of degree i, ordered
as in (3). Then xif ∈ Rσi and Ãfi ∈ Rnf ×σi .

Note that by using similar definitions (5) and (6) with respect
to the filter (11), one can write system (11) as

ẋf = (Af + Af 2Xf 2)xf + (Af 3Xf 3)x2f + · · · + (AfgXf 3)x
g−1
f + Bf y

zf = Cf xf + Df y.
(12)

Defining the augmented state vector x̂i =

xi′ xi′f

′
and the

output error e = z − zf , the augmented system reads

˙̂x = (Â + Â2X̂2)x̂ + Â3X̂3x̂2 + · · · + Âg X̂g x̂g−1
+ B̂w

e = (Ĉ + Ĉ2X̂2)x̂ + Ĉ3X̂3x̂2 + · · · + Ĉg X̂g x̂g−1
+ D̂w

(13)

where

Â =


A 0

Bf C21 Af


∈ R2n×2n, Âi =


Ai 0

Bf C2i Afi


∈ R2n×2nσi−1 ,

B̂ =


B1

BfD21


∈ R2n×r ,

Ĉ =

C11 − Df C21 −Cf


∈ Rp×2n,

Ĉi =

C1i − Df C2i 0


∈ Rp×2nσi−1 ,

D̂ =

D11 − DfD21


∈ Rp×r , X̂i =


Xi 0
0 Xfi


∈ R2nσi−1×2σi−1 .

At this stage, it could be interesting to study if system (13) with
w = 0 can be globally asymptotically stable (i.e., asymptotically
stable for any initial condition x̂(0) ∈ R2n). However, the study of
the global asymptotic stability for a nonlinear polynomial system
is a difficult task, as underlined in [25]. Therefore, it seems that a
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