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a b s t r a c t

It has been recently shown inRen et al. (2010) that by collecting noise-contaminated time series generated
by a coupled-oscillator system at each node of a network, it is possible to robustly reconstruct its topology,
i.e. determine the graph Laplacian. Restricting ourselves to linear consensus dynamics over undirected
communication networks, in this paper we introduce a new dynamic average consensus least-squares
algorithm to locally estimate these time series at each node, thus making the reconstruction process fully
distributed and more easily applicable in the real world. We also propose a novel efficient method for
separating the off-diagonal entries of the reconstructed Laplacian, and examine several concepts related
to the trace of the dynamic correlation matrix of the coupled single integrators, which is a distinctive
element of our network reconstruction method. The theory is illustrated with examples from computer,
power and transportation systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In graph theory the ‘‘basic inverse problem’’ consists in deter-
mining the topology of a graph from its adjacency spectrum [1]. It is
well known that: (i) graphs with few distinct eigenvalues tend to
have some kind of regularity; (ii) cospectral graphs have the same
number of closedwalks of a given length; (iii) there exist cospectral
graphs which are not isomorphic. Therefore, the adjacency (and
analogously the Laplacian) spectrum of a graph is not sufficient,
in general, to unambiguously identify the graph topology.

Recently, the interest in the basic inverse problem has been re-
vitalized by several works in the control andmathematical physics
literatures, dealing with the reconstruction of the topology of a
network of dynamical systems (this is also sometimes referred to
as network ‘‘identification’’ or ‘‘exploration’’ problem). Uncovering
the relationship between dynamics and network structure has in-
deed relevant applications in biology (biochemical, neural and eco-
logical networks), finance, computer science (Internet and World
Wide Web), transportation (delivery and distribution networks),
and electrical engineering (power grids).

In [2], the interaction geometry among a known number of
agents adopting (weighted) consensus-type algorithms for their
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coordination, is reconstructed using a grounding procedure in-
spired by experimental biology, called ‘‘node knockout’’ (see also
[3]),while in [4] the consensusmatrix is determined from its eigen-
structure estimated in a distributed fashion.

Stochastic methods have lately emerged as powerful alterna-
tives to the deterministic ones in [2–4]: the main idea here is to
reconstruct the network topology from noise-contaminated time
series collected at each node of the graph. Noise is ubiquitous,
e.g., in biological networks and relying on such a natural vari-
ability as a non-invasive network-identification tool appears ex-
tremely promising [5]. Several stochastic reconstruction methods
have been proposed in the recent literature. In [6], the topology
of a directed weighted network of LTI systems is estimated via
power spectral analysis, while in [7] the authors formulate the
problemof network reconstruction as a compressing sensing prob-
lem. Other approaches have exploited the sparsity of the network
and used the Bayesian information criterion to measure the graph
structure from stationary time series [8] or optimization-based
methods [9]: however, although the sparsity assumption is well
justified in some applications (e.g. in biological networks), it may
lead to poor results in other cases as shown in [10]. More related
to the standard system-identification literature is the work in [5],
where the authors formulated the network reconstruction prob-
lem as a variant of the spectral factorization problem, and [11]
where the classical ‘‘direct method’’ of closed-loop identification
is utilized. However, in these works unknown noise sources are
applied only to the states that are measured, which is an unreal-
istic assumption in many applications. Finally, in [12], an inter-
esting connection between dynamic correlation and topology in
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Fig. 1. Distributed network reconstruction: node i must reconstruct the topology
of the network G by only exchanging information with its set of neighbors N (i)
(red nodes). (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)

noisy coupled-oscillator networks (where the noise magnitude is
known) has been unveiled. The reconstruction algorithmoriginally
proposed in [12] has been recently improved in [13] by defining a
different thresholding mechanism based on the largest eigenvalue
of the Laplacian matrix estimated in a distributed fashion. How-
ever, all the aforementioned stochastic approaches are centralized
or semi-centralized (as [13]), since they require the knowledge of
time series at each node of the network, and thus impractical for
real-world applications.

This paper builds upon [12] and extends it in several new di-
rections. In particular, the original contributions of this work are
threefold:
• The approach in [12] is made fully distributed by leveraging a

new dynamic average consensus least-squares algorithm for
the local estimation of the noisy time series at each node of
the graph. In this way, each node is able to infer the topol-
ogy of the overall undirected network (cf. Fig. 1): to the best of
our knowledge, together with [4], this is the only completely-
decentralized reconstruction algorithm available in the litera-
ture for networks of dynamical systems. An original stability
analysis of the proposed dynamic average consensus least-
squares estimator is also performed.

• A new robust and effective mechanism for separating the −1
and 0 off-diagonal entries of the reconstructed graph Laplacian
is proposed. Themethod is based on κ-means clustering [14] and
it is simpler than the thresholding criteria utilized in [12,13].

• Interesting connections are shown between the trace of the dy-
namic correlationmatrix of the coupled single-integrator nodes
(which plays a crucial role in our reconstruction mechanism),
the total effective resistance of the network [15], and theH2 norm
of noisy reduced consensus dynamics [16,17].

Note that the distributed network-reconstruction algorithm pro-
posed in this paper may represent a valid alternative (at least at
small scales) to ‘‘web crawlers’’ for the World Wide Web and to
‘‘traceroute sampling’’ for the Internet, where there does not ex-
ist a vantage point with complete information about the overall
structure of the system. Moreover, it may be useful for probing the
structure of dynamically-changing networks, e.g. road networks,
where links can appear/disappear over time because of accidents
or works on the carriageway.

The rest of this paper is organized as follows. Section 2 presents
some background material. The main theoretical results of the
work are introduced in Sections 3 and 4, and the theory is
illustrated with numerical simulations on realistic networks in
Section 5. Finally, Section 6 summarizes the main contributions of
the paper and outlines some promising future research directions.

2. Preliminaries

In this section we recall some notions of algebraic graph theory
and robust control, and introduce the notation.

Let G = (V, E) be an undirected graph (or network), where
V = {1, . . . , n} is the set of nodes and E the set of links. N (i)
will indicate the set of nodes adjacent to node i in the graph G. All
graphs in this paper are finite, connected, with no self-loops and
multiple links.

The adjacency matrix A = [aij] of graph G is an n × n matrix
defined as

aij =


1 if {i, j} ∈ E,

0 otherwise.

The Laplacian matrix L = [ℓij] of graph G is an n × n symmetric
positive semidefinite matrix defined as L = D − A where D =

diag(A1) is the degree matrix and 1 is a column vector of n ones.
From this definition, it follows that:

ℓij =


n

j=1

aij if i = j,

−1 if {i, j} ∈ E, i, j ∈ {1, . . . , n},

0 otherwise.

Let LĎ be the (Moore–Penrose) pseudoinverse of the Laplacian
matrix, J =

1
n 11

T the n × n (rank one) averaging matrix, and In
the n × n identity matrix. Then, we have that

LĎ L = In − J, (1)
which is the projection matrix onto the image of L [15]. From (1),
it can be verified that:

LĎ = (L + J)−1
− J, (2)

and that

trace(LĎ) =

n
i=2

1
λi(L)

, (3)

where 0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L) are the ordered
eigenvalues of L [15]. Note that LĎ inherits from L the property
of being symmetric and positive semidefinite. Moreover, LĎ and L
share the same null space.

The H2 norm of a general LTI system ẋ = A x + Bu, y = E x,
with A Hurwitz, is given by (trace(EXET ))1/2 where the positive
semidefinite matrix X (the controllability Gramian) solves the
algebraic Lyapunov equation AX + XAT

+ BBT
= 0. In addition,

if the pair (A, B) is controllable, X is positive definite.
Notation: |S | will denote the cardinality of the set S , ∅ the
empty set, Re(z) and |z| the real part and modulus of the complex
number z, respectively, ⊗ the Kronecker product, blkdiag(·) a
block-diagonal matrix, E[ · ] the expectation operator, ∥ · ∥2 the
Euclidean norm of a vector and ∥ · ∥L2 the total energy or L2 norm
of a vector-valued signal.

3. Problem formulation

For the reader’s convenience we briefly review here the main
results in [12], which form the basis for our subsequent develop-
ments. We will start with a general formulation dealing with di-
rected graphs, and then we will specialize our results to undirected
networks with coupled single-integrator node dynamics.

Consider a directed network of n nonidentical coupled oscilla-
torswhere xi ∈ Rm, i ∈ {1, . . . , n}, denotes the state variable of the
ith oscillator and xi(0) the initial state. In the presence of noise, the
dynamics of the whole oscillator system can be expressed as

ẋi = Fi(xi) − γ

n
j=1

ℓij H(xj) + ηi, (4)

where Fi : Rm
→ Rm is the intrinsic dynamics of the ith oscil-

lator, H : Rm
→ Rm is the coupling function of the oscillators,

γ > 0 is the coupling strength, and ηi ∈ Rm is the zero-mean
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