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a b s t r a c t

In this paper, we address the approximation problem of distributed delays. These elements are convo-
lution operators with kernel having bounded support and appear in the control of time-delay systems.
From the rich literature on this topic, we propose a general methodology to achieve such an approxima-
tion. For this, we enclose the approximation problem in the graph topology, and working on the convolu-
tion Banach algebra, a constructive approximation is proposed. Analysis in time and frequency domains
is provided. This methodology is illustrated on the stabilization control for time-delay systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interest for the use of distributed delays in the stabiliza-
tion of time-delay systems appears in the pioneering work of
Olbrot [1]. To generalize algebraic methods issued from linear sys-
tems in finite dimensional spaces to time-delay systems, Kamen et
al. [2] first introduce a generalmathematical setting for the control,
and in particular for the stabilization, of time-delay systems. This
mathematical framework was formalized in [3] with the introduc-
tion of the Bézout ring of pseudopolynomials. In all these works,
distributed delays appear to be central [4]. A distributed delay is a
linear input–output convolution operator of the form

y(t) = (f ∗ u)(t) =

 ϑ

0
f (τ )u(t − τ) dτ (1)

where ϑ > 0 is bounded, and the kernel f (·) is a continuous func-
tion with support [0, ϑ]. Numerical implementation of distributed
delay was early investigated. A first proposition for approxima-
tion with finite dimensional systems was proposed in [5]. Reduc-
tion and approximation of delay systems, involving lumped delays,
were also investigated in [6]. In thework of [7], the authors propose
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a numerical integral approximation to realize an operator as given
in (1). Such an approximation writes as a sum of lumped delayed
distributions and unfortunately introduces additional closed-loop
poles and also instability phenomena. See e.g. [8] and references
therein. To overcome this problem, various solutions were pro-
posed. An additional low-pass filter in the integral approximation
was proposed in [9,10]. Further implementation improvements
were made in [11], with rational approximation and extension of
bilinear transformations, and in [12], where a shift-based method
for rational approximation using the Von Neumann inequality and
Padé approximation was analyzed. These last papers address pos-
itively the continuous-time approximation of distributed delays.
Proposals for a discrete-time realization of distributed delays are
included in [13].

A continuous time approximation needs to reproducewith high
fidelity the internal dynamics of this operator, for large classes of
input signals, and also to generate an arbitrarily close input–output
behavior to the original one. To fulfill these objectives, we in-
troduce the kernel approximation that can be realized by vari-
ous classes of operators, like polynomials, rational fractions, or
exponentials. See, e.g. [14,15] and references therein. With the
objective to substitute the distributed delay by a more tractable
system, we propose two classes that realize approximation,
namely lumped systems and a subclass of distributed delays. We
enclose the approximation problem into the Wiener algebra of
BIBO-stable systems, using the graph topology. This corresponds
to the weakest topology for which feedback stabilization is a ro-
bust property. Moreover, for stable and strictly proper systems,
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graph topology and norm topology being the same, we work on
L1-norm convergence over this algebra. This general framework
was used first in [16] for the approximation of distributed param-
eter systems by lumped systems. This idea also grows in [17], for
the approximation of lumped delayed distributions which appear
in optimal control. We show that working in this general setting
leads to an approximation of the distributed delay in both time and
frequency domains, for large classes of input signals.

The paper is organized as follows. In Section 2, we define
and characterize the main properties of distributed delays, using
decompositions on the so-called elementary distributed delays. In
Section 3, we explicit our approximation problem and solve it. A
constructive approximation is described in Section 4. Simulations
show the effectiveness of the method on the stabilization control
problem.

2. Convolution operators and distributed delays

2.1. Convolution algebra

Input–output causal convolution systems described by (1) are
naturally defined over a commutative algebra. A general algebra
of distributions including a wide class of convolution systems was
introduced in [18]. For our purpose,we consider a subalgebra of the
Callier–Desoer algebra, and we denote it by A . We say that f ∈ A

if

f (t) =


fa(t)+ fpa(t), t ≥ 0
0, t < 0 (2)

where the complex-valued function fa(·) ∈ L1(R+), that is fa is a
complex valued function, locally integrable on R+, and such that

∞

0 |fa(t)| dt < ∞. The complex-valued distribution fpa stands for
the purely atomic part

fpa(t) =

∞
n=0

fnδ(t − tn), (3)

with fn ∈ C, n = 0, 1, . . . , 0 = t0 < t1 < t2 < · · ·,
δ(t − tn) denoting the Dirac delta distribution centered in tn, and

n≥0 |fn| < ∞. As shown in Desoer and Vidyasagar [19], A is a
commutative convolution Banach algebra for the norm

∥f ∥A = ∥fa∥L1 +

∞
n=0

|fn|, (4)

and with a unit element the Dirac delta distribution δ. Let us recall
the concept of bounded input–bounded output stability.

Definition 1. A convolution system in the form (1) is said to be
BIBO stable if f ∈ A .

Denoting f̂ as the Laplace transform of f , ˆA is the set of Laplace
transforms of elements in A . It is also a commutative Banach al-
gebra with unit element under pointwise addition and multiplica-
tion, for the norm

f̂ 
ˆA
= ∥f ∥A .

2.2. Distributed delays

Let Ia,b = [a, b] be the bounded closed interval inR+, for some
reals a and b, 0 ≤ a < b. Notations I0,∞ or R+ stand for [0,∞[.
We define K (Ia,b) as the set of complex valued functions g(·) in
the form

g(t) =


gIa,b(t), t ∈ Ia,b
0, elsewhere (5)

where

gIa,b(t) =


i≥0


j≥0

cij t j eλit , (6)

for some cij and λi in C, and the sums are finite. For any real valued
function in K (Ia,b), if some λi ∈ C appears in the sum, then so
does its conjugate λ̄i, and the associated coefficients cij are complex
conjugates. Hence, any real valued function inK (Ia,b) is a function
generated by real linear combinations of t jeσit , t jeσit sin(βkt) and
t jeσit cos(βkt), for some reals σi, βk, the sums being finite. The
formal definition of distributed delay is as follows.

Definition 2. A distributed delay is a causal convolution system
in the form (1) with kernel f in K (Iϑ1,ϑ2), for some bounded real
numbers 0 ≤ ϑ1 < ϑ2.

The set of distributed delays is denoted by G . Any distributed delay
inG admits a Laplace transform, corresponding to the finite Laplace
transform of its kernel f ∈ K (Iϑ1,ϑ2),

ŷ(s) = f̂ (s)û(s), f̂ (s) =

 ϑ2

ϑ1

fIϑ1,ϑ2 (τ ) e
−sτ dτ , (7)

where f̂ ∈ Ĝ is an entire function. The notion of elementary
distributed delay will greatly simplify the approximation problem.
Let us define the complex valued function θλ(·) ∈ K (I0,ϑ ), for
some λ ∈ C and ϑ > 0, by

θλ(t) =


eλ t , t ∈ [0, ϑ]

0, elsewhere (8)

and its Laplace transform

θ̂λ(s) =
1 − e−(s−λ)ϑ

s − λ
, (9)

which is an entire function even at s = λwhere θ̂λ(λ) = ϑ . In other
words, λ is a removable singularity, and consequently θ̂λ(s) has no
pole. The distributed delay with kernel θλ is called an elementary
distributed delay. The kth derivative θ̂ (k)λ (s) of θ̂λ(s) leads to

θ̂
(k)
λ (s) =

 ϑ

0
(−τ)ke−(s−λ)τ dτ , (10)

which is still in Ĝ and corresponds to the Laplace transform of the
function θ kλ(t) = (−t)kθλ(t). From previous definitions, we can
state the following lemma, which also appeared in [3], and which
plays a central role for approximation.

Lemma 1. Any element in Ĝ can be decomposed into a finite sum
of the Laplace transform of elementary distributed delays and their
successive derivatives.

Proof. Take any element in G . Its kernel g(·) lies in K (Iϑ1,ϑ2) and
writes as in (6). By time translation corresponding to the lumped
delay ϑ1, it is readily a linear finite combination of elementary
distributed delays θλ(t) and of the functions θ kλ(t), as defined in
(8) and (10), with ϑ = ϑ2 − ϑ1. �

From this result, for any ĝ ∈ Ĝ , there exist complex polynomials
ĝik ∈ C[e−ϑs

] with respect to the variable e−ϑs and λi ∈ C, in finite
number, such that

ĝ(s) =


i,k

ĝik(e−ϑs)θ̂
(k)
λi
(s), (11)

where successive derivatives are iteratively computed by

θ̂
(k)
λi
(s) = (−1)kk!

1 − e−(s−λi)ϑ −

k
n=1

ϑn

n! e
−(s−λi)ϑ (s − λi)

n

(s − λi)k+1
, (12)
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