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a b s t r a c t

This paper is concerned with the problems of absolute exponential stability and stabilization for a
class of switched nonlinear systems whose system matrices are Metzler. Nonlinearity of the systems is
constrained in a sector field, which is bounded by two odd symmetric piecewise linear functions. Multiple
Lyapunov functions are introduced to deal with the stability of such nonlinear systems. Compared
with some existing results obtained by the common Lyapunov function approach in the literature, the
conservatism of our results is reduced. All present conditions can be solved by linear programming.
Furthermore, the absolute exponential stabilization for the considered systems is designed by the state-
feedback and average dwell time switching strategy. Two examples are also given to illustrate the validity
of the theoretical findings.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A switched system consists of a family of dynamical subsystems
and a switching rule that determines the switching among them.
Such a system has attracted much attention during recent years
because it arises in many engineering applications, for example,
constrained robotics [1], transmission and stepper motors [2],
computer disk drives [3], and automated highways [4], to list a
few. Stability and stabilization are two fundamental and important
research issues in the control community. Various approaches have
been proposed for solving these problems of switched systems,
such as the multiple Lyapunov function (MLF) approach [5–7], the
common Lyapunov function (CLF) approach [8,9], the switched
Lyapunov function approach [10,11], and so on [12,13].

Recently, a special class of switched nonlinear systems, whose
system matrices are Metzler and nonlinear functions satisfy the
sector conditions, was studied in [14–17]. The reader is referred
to the literature [18–20] for more detailed information. Note that
the systems considered in these papers have extensive applications
in Hopfield neural networks [21], Lotka–Volterra ecosystems [22],
and variable structure systems [23], to mention a few. In [14,15],
two improved CLFs were proposed, respectively, to ensure the
absolute stability (ABST) of switched systems with arbitrary
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switching signal and any admissible sector nonlinearities. In [16],
a control law guaranteeing the corresponding system to be uni-
formly ultimately bounded was constructed based on the CLF ap-
proach. ABST of switched nonlinear systems was further discussed
in [17], where the developed conditions were more simpler than
those in [14].

It is well known that the MLF approach is relatively less
conservative than the CLF approach. The basic idea is that MLFs,
which correspond to each subsystem or certain region in the state
space, are pieced together to produce a non-traditional Lyapunov
function. The traditional Lyapunov function requires that its overall
energy decreases to zero along the system trajectories, while the
MLF only requires non-positive time derivatives along the state
trajectories for a certain subsystem.

On the other hand, it should be pointed out that, when design-
ing a control system, one is concerned not only with the stability
of the system but also with the convergence rate. A fast conver-
gence rate in the system state is usually preferred. For example, in
most of applications of the neural network and the power system,
the convergence speed is expected to increase in order to cut down
on the neural computing time and reduce the oscillation of power
frequency. Therefore, it is important to determine the exponential
stability. The concept of absolute exponential stability (AEST) given
in the paper extends many types of stability such as global asymp-
totical stability, global exponential stability, ABST, etc. Thus, AEST
is a more meaningful concept.

Based on the above observations, it naturally gives rise to some
questions. Can the MLF be used instead of the CLF to deal with
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those issues?Whether AEST of the systems considered in the paper
can be obtained? These topics are interesting but challenging. For
switched linear systems, it is easy to obtain: (i) each subsystem
is exponentially stable; (ii) an increscent ratio between Lyapunov
functions of different subsystems. Thus, an extension from the CLF
approach to the MLF approach is trivial, and global exponential
stability or AEST is easy to obtain. However, the two aspects
seem to be hard to reach for switched nonlinear systems due
to nonlinearity of the systems and Lyapunov functions. These
motivate us to carry out the work.

This paper studies AEST of switched nonlinear systems with
sector conditions.We slightlymodify the sector conditions that the
upper and lower boundaries hold linear form. A formula of MLF
is constructed to solve AEST of the system. The present method is
also used to design the feedback law and ADT of non-autonomous
systems, such that the resulting closed-loop systems are AEST. The
paper extends the results in [14,17]. The remainder of the paper is
organized as follows: Section 2 presents the problem formulation
and preliminaries; main results are given in Section 3. In Section 4,
two examples are proposed; Section 5 concludes the paper.

Notations: ℜ denotes the set of real numbers, ℜn represents the
space of the vectors of n-tuples of real numbers, and ℜ

n×n is the
space of n×n real matrices. The interval [0, ∞) inℜ is denoted by
R+. N and N+ are the sets of nonnegative and positive integers,
respectively. ∥ · ∥ is the Euclidean norm. AT is the transpose of
matrix A. In is the n × n identity matrix. For v in ℜ

n, vi is the ith
component of v, and v ≻ 0(≽0) means that all components of v
are positive(nonnegative), i.e. vi > 0(≥0). For A inℜ

n×m, aij stands
for the element in the ith row and the jth column of A. A matrix
A is said to be a Metzler matrix if its off-diagonal elements are all
nonnegative. A function ϕ : R+ → R+ is said to be of class K if it
is a continuous, strictly increasing function satisfying ϕ(0) = 0. It
is of class K∞ if it is unbounded.

2. Problem formulation and preliminaries

Consider the switched nonlinear system

ẋ(t) = Aσ(t)f (x(t)), (1)

where x = (x1, . . . , xn)T ∈ ℜ
n is the system state; f (x) =

(f1(x1), . . . , fn(xn))T ∈ ℜ
n; σ(t) is a mapping defining the switch-

ing law from [0, ∞) to a finite set S = {1, 2, . . . ,N},N ∈ N+,
and it is continuous from the right everywhere for a switching se-
quence 0 ≤ t0 < t1 < · · ·; Ap ∈ ℜ

n×n, p ∈ S. Throughout the
paper, it is assumed that Ap is a Metzler matrix for each p ∈ S, un-
less otherwise stated. The nonlinear function f (x) lies in the sector
field satisfying

γ ς2
≤ fi(ς)ς ≤ δς2, ∀ς ∈ ℜ,

fi(0) = 0, i = 1, 2, . . . , n,
(2)

where 0 < γ ≤ 1 ≤ δ. The restriction (2) was applied in [24–26]
and extended the sector restriction fi(ς)ς > 0 used in [14–17].We
also relax the sector condition (2) to more general case later.

Now, we introduce some definitions and lemmas.

Definition 1. System (1) is said to be AEST if its zero solution is
globally exponentially stable for any admissible nonlinear func-
tions f1(x1), . . . , fn(xn) satisfying (2) and any switching signal.

In the paper, the switching signal is ADT switching rather than
arbitrary switching in [14–17]. ADT switching can characterize a
larger class of stable switching signals than arbitrary switching,
and its extreme case is actually the arbitrary switching. This class of
switching signal has been widely employed to solve the problems
of switched systems [5–7,12,13].

Definition 2. Let σ(t) be a switching signal and Nσ (t2, t1) be the
switching number of σ(t) in time interval [t1, t2]. If there exist two
constants N0 ≥ 0 and τ ∗ > 0 such that

Nσ (t2, t1) ≤ N0 + (t2 − t1)/τ ∗, (3)

then τ ∗ is an ADT of the switching signal σ(t) and N0 is the chatter
bound.

Lemma 1 ([27]). Let A ∈ ℜ
n×n be a Metzler matrix. Then the follow-

ing statements are equivalent:

(i) A is a Hurwitz matrix;
(ii) there exists a vector v ≻ 0 in ℜ

n such that Av ≺ 0.

By Lemma 1, it holds that there exists a vector v ≻ 0 inℜ
n such

that Av ≺ 0 is equivalent to that there exists a vector v′
≻ 0 in ℜ

n

such that ATv′
≺ 0.

3. Main results

This section contains three subsections. The first subsection
gives AEST analysis of system (1). The second subsection presents
some extensional results. The third subsection addresses stabiliza-
tion design of a new defined system.

A CLF V (x) = Σn
i=1λi

 xi
0 f ι

i (ς)dς was employed in [14], where
ι > 0 is a given rational number with odd numerator and denom-
inator, and λ = (λ1, . . . , λn) ≻ 0. Along the system (1), the time
derivative of the CLF

V̇ (x) =

n
i,j=1

λia
(p)
ij f ι

i (xi)fj(xj) (4)

is negative definite for each p ∈ S, where a(p)
ij is the i row j column

of Ap. This paper presents MLF as follows:

Vp(x) =

n
i=1

λ
(p)
i

 xi

0
fi(ς)dς, (5)

where λ(p)
= (λ

(p)
1 , . . . , λ

(p)
n )T ≻ 0.

3.1. AEST analysis

In the first subsection, we give AEST analysis of system (1).

Theorem 1. If there exist a constant µ > 0 and a vector v(p)
=

(v
(p)
1 , . . . , v

(p)
n )T ≻ 0 such that

Apv
(p)

+ µv(p)
≺ 0, (6)

holds ∀p ∈ S, then under the ADT satisfying

τ ≥ τ ∗
=

ln η

α
, (7)

system (1) is AEST for any admissible nonlinearity, whereα =
2µv·ωγ 2

v2δλ

and η =
δλ
γ λ

, where v = minp∈S

v

(p)
i , i = 1, 2, . . . , n


, v =

maxp∈S

v

(p)
i , i = 1, 2, . . . , n


, ω = minp∈S


ω

(p)
i , i = 1, 2,

. . . , n

, λ = minp∈S{λ

(p)
i , i = 1, 2, . . . , n}, λ = maxp∈S


λ

(p)
i , i =

1, 2, . . . , n

, andω

(p)
i and λ

(p)
i are defined in (8) and (9), respectively.

Proof. By Lemma 1 and (6), there exists a vector ω(p)
= (ω

(p)
1 ,

. . . , ω
(p)
n )T ≻ 0 such that

AT
pω

(p)
+ µω(p)

≺ 0. (8)
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