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a b s t r a c t

We study the system representations, factorizations and stabilizability of a discrete-time time-varying
linear system in the framework of nest algebra. We shown that every time-varying linear system admits
a normalized left factorization, while it may possibly not have a right factorization. The relationship
between the system representation and factorization is studied, and some new stabilizability criteria are
established.
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1. Introduction

Stabilizability is a basic concept for stability analysis of linear
systems. The theory on the connection between coprime factoriza-
tion and different forms of stabilizability of finite-dimensional sys-
temsmatured in the 1980s [1–3]. Thereafter, coprime factorization
played a major role in stability theory for both finite- and infinite-
dimensional systems. Smith showed that every stabilizable MIMO
system has a coprime fraction representation over H∞ [3], for
which the system is defined by means of a transfer matrix with
entries in the quotient field of a certain integral domain of SISO
stable plants. Some related results were established for general
non-rational functions in the operator-valuedH∞ case [4–6].With
the development of H∞ control theory, much insight has been ob-
tained by considering the time-varying analog on an appropriate
complexHilbert space of input–output signals. The approach taken
in this case is the input–output point: the system is considered
as a linear causal operator (possibly unbounded) defined on the
separable Hilbert space, and the set of stable, causal, time-varying
linear systems is referred to in the literature as the nest algebra.
In the case of a discrete-time time-varying linear system, a strong
representation as an alternative but equivalent framework to co-
prime factorization was developed by Dale and Smith [7]. In such
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situations, a system is stabilizable if and only if it has strong left
and right representations. This result allows application of com-
prime factorization theory to any stabilizable time-varying system,
for which there is a Youla-type parameterization theorem that is
conceptually similar to the classical result for time-invariant lin-
ear systems. Equivalence between the existence of left and right
coprime factorizations has been derived according to the complete
finiteness of the nest algebra [8,9].

The Youla parameterization was developed for stabilizable sys-
tems that admit doubly coprime factorizations. However, this re-
sult is generally not true for infinite-dimensional linear systems
(e.g. differential time-delay systems, partial differential equa-
tions) [10]. Quadrat applied lattice theory in the fractional rep-
resentation approach to exhibit the general parameterization of
all the stabilizing controllers for a stabilizable plant that does not
necessarily admit doubly coprime factorizations [11,12]. This pa-
rameterization is in fact in terms of weakly coprime factoriza-
tions.Weak coprimeness is inmanyways amore natural extension
of coprimeness to infinite-dimensional systems than the Bezout
case. In the finite-dimensional case, coprime factorization of a
system is determined by the linear quadratic (LQ) optimal-state
feedback. A related result was extended to infinite-dimensional
time-invariant systems over arbitrary Hilbert spaces, in the sense
that the factorization is weakly coprime [13]. Obviously, factoriza-
tion is a more natural definition than (weakly) coprime factoriza-
tion. In addition, a representation is more natural than a strong
representation [14,15]. There are some results for factorizations
and representations of time-invariant linear systems. Left and
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right factorizations for every finite-dimensional time-variant sys-
tem always exist. Mikkola showed that this does not hold for
infinite-dimensional time-invariant systems [13]. The existence
of normalized right representations for finite-dimensional time-
invariant linear systems is obtained as a well-known consequence
of the Beurling–Lax theorem. Mikkola showed that an infinite-
dimensional time-invariant system has a normalized right fac-
torization that is also a right representation if it has a right
factorization [13]. However, the same problem has never been
solved in the infinite-dimensional case. To the best of our knowl-
edge, there are no corresponding results in the literature for
discrete-time time-varying linear systems in the framework of nest
algebra. The existence of left and right factorizations for time-
varying linear system requires clarification. It is also of great in-
terest to study the representations and factorizations and the
relationship between them.

Here we consider properties of the representations, factoriza-
tions, and stabilizability for time-varying linear systems. We use
the framework described by Dale and Smith [7], which allows us
to give some purely operator-theoretic formulations for the stabi-
lizability. Davidson provided a more general framework based on
operator algebra methods, in particular nest algebra [16]. We are
not concerned with systems in state–space form [6,13], but con-
centrate on the input–output properties and issues such as the
existence of system representations and factorizations. First, we
provide an example of a time-varying linear system that does not
admit a right factorization. We use operator theory to prove that
every time-varying linear system admits a normalized left factor-
ization, and the normalized left factorization is unique modulo
the left multiplication by a unitary operator in the nest algebra.
We clarify some relationships between the factorizations and rep-
resentations. We also develop a time-varying generalization of
weakly coprime factorization and show that a right factorization
is a right representation if and only if it is weakly coprime. Finally,
we revisit the feedback stabilization problem and establish some
stabilizability criteria in terms of normalized left factorization.

The remainder of the paper is organized as follows. Some
notations, definitions, and mathematical results from operator
theory and system theory are gathered in Section 2. In Section 3,we
study the properties of system representations and factorizations
in detail. In Section 4, we derive some necessary and sufficient
conditions for the stabilizability of time-varying linear systems.
The paper ends with an example.

2. Basic notations and operator theory

In this section, we introduce notations, definitions, and some
results used throughout the paper. More details can be found in
the literature [15–18].

Let H and K be two separable Hilbert spaces. The symbol ‘‘⊕’’
denotes the direct sum of two Hilbert spaces. B(H, K) denotes
the Banach space of bounded linear operators from H to K , and
B(H) := B(H, H). The image and kernel of T ∈ B(H, K) are
denoted by Im T = {y ∈ K : y = Tx, x ∈ H} and Ker T =

{x ∈ H : Tx = 0}, respectively. The restriction of T to the closed
subspace V ⊆ H is denoted by T |V , i.e., (T |V)(x) =


Tx, x ∈ V

0, x ∈ V⊥ .
The adjoint of the operator T is denoted by T ∗.

An operator T ∈ B(H, K) is an isometry if ∥Tx∥K = ∥x∥H

for all x ∈ H ; equivalently, T ∗T = I . T is a co-isometry if T ∗ is an
isometry. T ∈ B(H) is a unitary operator if T ∗T = TT ∗

= I [17,
Section II.2.17].

Definition 2.1 ([17, Section IX.1.3]). Let {An} be a bounded se-
quence in B(H, K).

1. {An} converges toA in theweak operator topology, denoted by
An

WOT
−→ A, if limn→∞⟨Anh, k⟩K = ⟨Ah, k⟩K for every h ∈ H, k ∈ K .
2. {An} converges to A in the strong operator topology, denoted

by An
SOT
−→ A, if limn→∞ Anh = Ah for every h ∈ H .

3. {An} converges to A in the weak-star topology if limn→∞ tr
(AnB) = tr(AB) for every trace class operator B in B(K, H).

Proposition 2.1 ([18, Chapter 3, Section 20.1]). (a) A bounded
sequence inB(H, K) converges in theweak-star topology if and only
if it converges in the weak operator topology.

(b) The closed unit ball of B(H, K) is a compact metric space in
the weak-star topology.

Proposition 2.2 ([19, Chapter 3, Section 28.2]). For a metric space X,
the followings are equivalent:

1. X is compact.
2. X is sequentially compact.

The input–output signal space considered here is a general-
ization of ℓ2-sequences to the sequences for which the compo-
nents have non-uniform dimensions. Given the index sequence
K = (k0, k1, . . .) that is an ordered series of non-zero natural num-
bers, the signal space is chosen as

ℓ2,K
:=


x = (x0, x1, . . . , xn, xn+1, . . .) : xi ∈ Cki ,

+∞
i=0

∥xi∥2
Cki < +∞


.

ℓ2,K is a complex separable Hilbert space with inner product and
norm in the following form:

⟨x, y⟩ =

+∞
i=0

⟨xi, yi⟩Cki , ∥x∥ =


+∞
i=0

∥xi∥2
Cki

 1
2

.

The extended space [15, Chapter 5] of ℓ2,K is defined by

ℓ2,K
e :=


x = (x0, x1, . . . , xn, xn+1, . . .) : xi ∈ Cki


.

For each n ≥ 0, Pn denotes the truncation projection on ℓ2,K and
ℓ2,K
e defined by

Pn(x0, x1, . . . , xn, xn+1, . . .) = (x0, x1, . . . , xn, 0, . . .).

We denote P−1 = 0 and P+∞ = I . For each n ≥ −1 (n ≠ +∞), the
seminorm ∥ · ∥n on ℓ2,K

e is defined by

∥x∥n = ∥Pnx∥, x ∈ ℓ2,K
e .

The family of seminorms {∥ · ∥n : −1 ≤ n < +∞} on vector
space ℓ2,K

e satisfies


−1≤n<+∞
{x : ∥x∥n = 0} = {0}. Thus, ℓ2,K

e
is a locally convex topology space whose topology is defined by
{∥ · ∥n : n ≥ −1}, called the resolution topology. These lead to a
nice characterization of ℓ2,K in ℓ2,K

e :

ℓ2,K
=


x ∈ ℓ2,K

e : sup
n≥−1

∥x∥n < +∞


.

Definition 2.2 ([15, Chapter 5]). Let L be a linear transformation on
ℓ2,K
e .
1. L is causal if PnLPn = PnL for all 0 ≤ n < +∞.
2. L is a time-varying linear system if L is a causal linear

transformation that is continuous with respect to the resolution
topology.

3. L is a stable linear system if L is causal and L|ℓ2,K is a bounded
linear operator.
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