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a b s t r a c t

Recent results in equivalence between classes of multipliers for slope-restricted nonlinearities are
extended to multipliers for bounded and monotone nonlinearities. This extension requires a slightly
modified version of the Zames–Falb theorem and a more general definition of phase-substitution. The
results in this paper resolve apparent contradictions in the literature on classes ofmultipliers for bounded
and monotone nonlinearities.
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1. Introduction

Different classes of multipliers can be used for analysing the
stability of a Lur’e system (see Fig. 1) where the nonlinearity is
bounded and monotone. A loop transformation allows us to anal-
yse slope-restricted nonlinearities with the same classes of mul-
tipliers [1]. Apparently contradictory results can be found in the
literature with respect to which class provides better results. On
the one hand, it is stated that a complete search over the class
of Zames–Falb multipliers will provide the best result that can
be achieved [2,3]. On the other hand, searches over a subclass
of Zames–Falb multipliers [4,5] have been improved by adding a
Popov multiplier [6–8].

The class of Zames–Falb multipliers is formally given in the cel-
ebrated paper [1]. Two main results are given: Theorem 1 in [1]
presents the Zames–Falb multipliers for bounded and monotone
nonlinearities; Corollary 2 in [1] applies the Zames–Falb multipli-
ers to slope-restricted nonlinearities via a loop transformation.We
have formally shown in [9] that the class of Zames–Falb multipli-
ers for slope-restricted nonlinearities, i.e. using Corollary 2 in [1],
should provide the best result in comparison with any other class
ofmultipliers available in the literature. The result relies on the fact
that only biproper plants need to be considered in the search for a
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Zames–Falb multiplier, since the original plant becomes biproper
after the loop transformation in Fig. 2 [1,10].

However, for bounded and monotone nonlinearities, biproper-
ness of the LTI system G cannot be assumed without loss of gen-
erality. But the conditions of Theorem 1 in [1] cannot hold when
the plant is strictly proper. An example has been proposed in [11]
where the addition of a Popov multiplier to the Zames–Falb mul-
tiplier is essential to guarantee the stability of the Lur’e system.
This prompts the natural question: is the addition of a Popov mul-
tiplier an improvement over the class of Zames–Falb multipliers
for bounded and monotone nonlinearities? In fact, we show that
this restriction of the conditions of Theorem 1 in [1] leads to more
fundamental contradictions.

This paper proposes a slightly modified version of Theorem 1 in
[1] in such a way that strictly proper plants can be analysed. Then,
generalizations of phase-substitution and phase-containment de-
fined in [9] are given in order to show the relationship between
classes of multipliers. As a result, we show that a search over the
class of Zames–Falb multipliers is also sufficient for bounded and
monotone nonlinearities, i.e. if there is no suitable Zames–Falb
multiplier then there is no suitable multiplier within any other
class of multipliers. This paper resolves some apparent paradoxes,
providing consistency to results in the literature.

The structure of the paper is as follows. Section 2 gives
preliminary results; in particular, the equivalence results in [9] are
stated and the differences between the cases of slope-restricted
and bounded and monotone nonlinearities are highlighted.
Section 3 provides the relationships between classes for the case
of bounded and monotone nonlinearities. Section 4 analyses the
example given in [11], showing that there exists a Zames–Falb
multiplier that provides the stability result under our modification
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Fig. 1. Lur’e system.

Fig. 2. Loop shifting transforms a slope restricted nonlinearity φ into a monotone
nonlinearity φ̂. Simultaneously, a new linear system Ĝ is generated. In [9], we
have shown that when generated via loop shifting Ĝ can be assumed biproper
without loss of generality from the necessity of the Kalman conjecture (for further
discussion, see Section 2.3 in [9]), but such an assumption cannot be made when
there is no loop shifting.

of Theorem 1 in [1]. Finally, the conclusions of this paper are given
in Section 5.

2. Notation and preliminary results

Let Lm
2 [0, ∞) be the Hilbert space of all square integrable and

Lebesgue measurable functions f : [0, ∞) → Rm. Similarly,
Lm

2 (−∞, ∞) can be defined for f : (−∞, ∞) → Rm. Given T ∈

R, a truncation of the function f at T is given by fT (t) = f (t)∀t ≤ T
and fT (t) = 0∀t > T . The function f belongs to the extended space
Lm

2e[0, ∞) if fT ∈ Lm
2 [0, ∞) for all T > 0. In addition,L1(−∞, ∞)

(henceforth L1) is the space of all absolute integrable functions;
given a function h : R → R such that h ∈ L1, its L1-norm is given
by

∥h∥1 =


∞

−∞

|h(t)| dt. (1)

A nonlinearity φ : L2e[0, ∞) → L2e[0, ∞) is said to be
memoryless if there exists N : R → R such (φv)(t) = N(v(t)) for
all t ∈ R. Henceforward we assume that N(0) = 0. A memoryless
nonlinearity φ is said to be bounded if there exists a positive
constant C such that |N(x)| < C |x| for all x ∈ R. The nonlinearity
φ is said to be monotone if for any two real numbers x1 and x2 we
have

0 ≤
N(x1) − N(x2)

x1 − x2
. (2)

The nonlinearityφ is said to be odd ifN(x) = −N(−x) for all x ∈ R.
This paper focuses the stability of the feedback interconnection

of a proper stable LTI system G and a bounded and monotone
nonlinearity φ, represented in Fig. 1 and given by

v = f + Gw,
w = −φv.

(3)

Since G is a stable LTI system, the exogenous input in this part of
the loop can be taken as the zero signal without loss of general-
ity. It is well-posed if the map (v, w) → (0, f ) has a causal in-
verse on L2

2e[0, ∞); this interconnection is L2-stable if for any
f ∈ L2[0, ∞), then Gw ∈ L2[0, ∞) and φv ∈ L2[0, ∞), and
it is absolutely stable if it is L2-stable for all φ within the class
of nonlinearities. In addition, G(jω) means the transfer function
of the LTI system G. Finally, given an operator M , then M∗ means
its L2-adjoint (see [12] for a definition). For LTI systems, M∗(s) =

M⊤(−s), where ⊤ means transpose.
The standard notation L∞ (RL∞) is used for the space of all

(proper real rational) transfer functions bounded on the imaginary
axis and infinity; RH∞ (RH2) is used for the space of all (strictly)
proper real rational transfer functions such that all their poles
have strictly negative real parts; and RH−

∞
is used for the space of

all proper real rational transfer functions such that all their poles
have strictly positive real parts. Moreover, the subset of RH2 with
positive DC gain is referred to as RH+

2 . The H∞-norm of a SISO
transfer function G is defined as

∥G∥∞ = sup
ω∈R

(|G(jω)|). (4)

With some acceptable abuse of notation, given a rational strictly
proper transfer functionH(s) bounded on the imaginary axis, ∥H∥1
means the L1-norm of the impulse response of H(s).

2.1. Zames–Falb theorem and multipliers

The original Theorem 1 in [1] can be stated as follows:

Theorem 2.1 ([1]). Consider the feedback system in Fig. 1 with G ∈

RH∞, and a bounded and monotone nonlinearity φ. Assume that the
feedback interconnection is well-posed. Then suppose that there exists
a convolution operator M : L2(−∞, ∞) → L2(−∞, ∞) whose
impulse response is of the form

m(t) = δ(t) −

∞
i=0

ziδ(t − ti) − za(t), (5)

where δ is the Dirac delta function and

∞
i=0

|zi| < ∞, za ∈ L1, and ti ∈ R ∀i ∈ N. (6)

Assume that:

(i)

∥za∥1 +

∞
i=0

|zi| < 1, (7)

(ii) either φ is odd or za(t) > 0 for all t ∈ R and zi > 0 for all i ∈ N,
and

(iii) there exists δ > 0 such that

Re {M(jω)G(jω)} ≥ δ ∀ω ∈ R. (8)

Then the feedback interconnection (3) is L2-stable. �

Eqs. (5)–(7) in Theorem 2.1 provide the class of Zames–Falb
multipliers. It is a subset of L∞, i.e. it is not limited to rational
transfer functions. However, for the remainder of this paper we
restrict our attention to such rational multipliers, i.e. we set zi = 0
for all i ∈ N.

Definition 2.2. The class of SISO rational Zames–Falb multipliers
M contains all SISO rational transfer functionsM ∈ RL∞ such that
M(s) = 1 − Z(s), where Z(s) is a rational strictly proper transfer
function and ∥Z∥1 < 1.
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