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a b s t r a c t

We study a semilinear mildly damped wave equation that contains the telegraph equation as a special
case. We consider Neumann velocity boundary feedback and prove the exponential stability of the closed
loop system.We show that for vanishing damping term in the partial differential equation, the decay rate
of the system approaches the rate for the system governed by the wave equation without damping term.
In particular, this implies that arbitrarily large decay rates can occur if the velocity damping in the partial
differential equation is sufficiently small.
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1. Introduction

We consider boundary feedback stabilization of a system gov-
erned by a semilinearwave equationwith a velocity damping term.
Special cases are also known as mildly damped wave equation or
string with viscous damping or telegraph equation without leak-
age. The telegraph equation is used as a model for the voltage and
current on a lossy transmission line. There is also a stochastic in-
terpretation of the telegraph equation as the limit of a randommi-
gration, see [1,2]. In order to show that our approach also covers a
nonlinear situation, we consider a semilinear system.

The exponential decay of the energy of the system for the
case with velocity damping in the pde and homogeneous Dirichlet
boundary conditions has been shown in [3].

Boundary feedback stabilization with memory type feedback
has been studied in [4]. The boundary dissipation of memory
type is discussed in [5]. In particular it includes as a special case
velocity feedback boundary conditions where waves are reflected
with a certain reflection coefficient. Velocity feedback for thewave
equation has been analyzed for example in [6]where explicit decay
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rate estimates for the exponential decay are given. In particular
in [6,7] it is stated that in the 1-d case, the energy decays to zero in
finite time for a certain choice of the feedback parameter.

We are interested in the behavior of the decay rates for
vanishing velocity term in the governing pde. In this case, the decay
rate given in the main theorem in [4] converges to zero, that is the
decay becomes arbitrarily slow. In this paper we show that in fact
for the parameters given in [6], the decay rates become arbitrarily
large with vanishing velocity damping term. This is for example
interesting in the case that the velocity damping term occurs as
a kind of perturbation or defect of the system. Our analysis shows
that as a result of the interplay between the damping in the interior
and the boundary damping, the decay rate approaches infinity if
the damping in the interior goes to zero. This is the main result of
this paper: The decay rate of the system with boundary damping
and damping term in the pde approaches the decay rate of the
system with boundary damping but without damping term in
the pde as the damping term in the pde vanishes. In particular
for the optimal feedback parameter if the interior damping is
sufficiently small arbitrarily large decay rates can occur for the
system with damping term in the pde as a result of the boundary
damping.

Note that our result also applies in the case of anti-damping
in the interior when the velocity term causes blow up in the case
without boundary damping, for example in the linear case if the
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constant in the velocity term has the wrong sign for a damping
term. Also in this case, the boundary damping generates exponen-
tial stability of the system if the velocity term in the pde is suffi-
ciently small.

We start our analysis in an L2-setting. Then we study solutions
that are bounded almost everywhere, that is solutions that are
defined in an L∞-setting which is particularly attractive in the
context of control. We also consider solutions in an H1-framework
that is often used for this type of system. For the construction
of the solutions we use the method of characteristic curves. Our
results are related to [8], where for a class of viscously damped
vibrating systems it is shown that the energy of the system
decays exponentially with a uniform rate for all viscous damping
parameters in certain intervals. However, these results do not
cover the case of boundary damping of the wave equation that we
consider in this paper.

2. Definition of the system

Let initial data y0 ∈ L2(0, 1), y1 ∈ H−1
:= {y ∈ D ′(0, 1) :

y = Y ′ for some Y ∈ L2(0, 1)} be given. Let a twice continuously
differentiable function g : [0, 1] × R → R be given, such that
g(x, 0) = 0 and there is a constant w ≥ 0 such that for all
x ∈ (0, 1) and all y ∈ R we have for the partial derivative gy with
respect to y

|gy(x, y)| ≤ w. (1)

We consider the system with the initial conditions

y(0, x) = y0(x), yt(0, x) = y1(x) for x ∈ (0, 1) (2)

with the evolution in time that is governed by the semilinear pde

ytt(t, x) − 2gy(x, y(t, x)) yt(t, x) = yxx(t, x) (3)

and with the boundary conditions

y(t, 0) = 0, yx(t, 1) = −fyt(t, 1) for t > 0 (4)

with a feedback parameter f ∈ [0, ∞). In [9], we have shown that
for w = 0, the choice f = 1 for the feedback parameter is optimal
in well-defined sense. In this case with f = 1, the system comes to
the zero position with zero velocity in finite time (see [6,7]).

As a special case, with g(x, y) = −wy our equation has the form
of the telegraph equation

ytt + 2w yt = yxx. (5)

3. Well-posedness

First we construct solutions of the system (2)–(4). We start
with the construction of solutions that are for all T̄ > 0 in the
function space L2((0, T̄ ) × (0, 1)). Then for more regular initial
data,wedefine solutions that are in L∞((0, T̄ )×(0, 1)).Using these
solutions, we finally show that for sufficiently regular initial data
we obtain solutions in L∞((0, T̄ ) × (0, 1)) ∩ H1((0, T̄ ) × (0, 1)).

3.1. L2-solutions

In Theorem 3 we will present solutions y that are for all T̄ >
0 in the function space L2((0, T̄ ) × (0, 1)). The first part of the
representation of the solution defined below in (6) is α(x + t) +

β(x − t), that is a traveling waves solution of the wave equation.
The other parts are generated by the damping term in the pde. We
are looking for a solution of the form

y(t, x) = α(x + t) + β(x − t) + γ+(t, x) + γ−(t, x). (6)

Here γ+ and γ− are defined as

γ+(t, x) =

 t

0
g(k+(s, x, t), y(s, k+(s, x, t))) ds (7)

γ−(t, x) =

 t

0
g(k−(s, x, t), y(s, k−(s, x, t))) ds (8)

thus γ+(0, x) = γ−(0, x) = 0 that is initially, γ+ and γ− vanish.
The map k−(·, x, t) is the continuous time-periodic function

with period 2 with values in [0, 1] that is uniquely defined by the
equations

k−(s, x, t) = x + t − s − 2n (9)

if x + t − s − 2n ∈ (0, 1) for some n ∈ Z and

k−(s, x, t) = s − x − t − 2n

if s − x − t − 2n ∈ (0, 1) for some n ∈ Z.
Note that we can also consider k−(s, x, t) as a function of s and

the sum x + t .
The function k+(·, x, t) is the continuous time-periodic function

with period 2 and values in [0, 1] that is uniquely determined by
the equations

k+(s, x, t) = x − t + s − 2n (10)

if x − t + s − 2n ∈ (0, 1) for some n ∈ Z and

k+(s, x, t) = t − x − s − 2n

if t − x − s − 2n ∈ (0, 1) for some n ∈ Z. Note that k+(s, x, t) is a
function of s and the difference x − t .

The curves k+(·, x, t), k−(·, x, t) are the characteristic curves
of our system through the point (t, x) with the reflections at the
boundaries x = 0 and x = 1. Note that k+ and k− are almost
everywhere differentiable as piecewise linear functions.

The initial conditions (2) determine the values of α|(0,1) and
β|(0,1) as elements of L2(0, 1). Similar as in the classical d’Alembert
solution, for x almost everywhere in (0, 1) we have

α(x) =
1
2
y0(x) +

1
2

 x

0
y1(s) − 2g(s, y0(s)) ds + CA, (11)

β(x) =
1
2
y0(x) −

1
2

 x

0
y1(s) − 2g(s, y0(s)) ds − CA (12)

with a real number CA. Due to the regularities of y0 and y1, (11) and
(12) imply that α, β ∈ L2(0, 1).

Note that k+(s, 0, t) = k−(s, 0, t). By the definitions (7), (8),
this implies

γ−(t, 0) = γ+(t, 0).

Now we want to derive equations that allow to compute the
functions α and β recursively in such a way that the boundary
conditions are satisfied. Representation (6) implies

yx(t, x) = α′(x + t) + β ′(x − t) + ∂xγ+(t, x) + ∂xγ−(t, x), (13)

yt(t, x) = α′(x + t) − β ′(x − t) + ∂tγ+(t, x) + ∂tγ−(t, x). (14)

Hence

yx(t, x) + fyt(t, x) = (1 + f )α′(x + t) + (1 − f )β ′(x − t)
+ ∂xγ+(t, x) + ∂xγ−(t, x) + f ∂tγ+(t, x)
+ f ∂tγ−(t, x).

Thus the boundary condition (4) at x = 1 implies for t > 0

α′(1 + t) = −
1

f + 1


(1 − f )β ′(1 − t) + ∂xγ+(t, 1)

+ ∂xγ−(t, 1) + f ∂tγ+(t, 1) + f ∂tγ−(t, 1)

.
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