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ABSTRACT

The aim of this paper is to address consensus and bipartite consensus for a group of homogeneous agents,
under the assumption that their mutual interactions can be described by a weighted, signed, connected
and structurally balanced communication graph. This amounts to assuming that the agents can be
split into two antagonistic groups such that interactions between agents belonging to the same group
are cooperative, and hence represented by nonnegative weights, while interactions between agents
belonging to opposite groups are antagonistic, and hence represented by nonpositive weights. In this
framework, bipartite consensus can always be reached under the stabilizability assumption on the state-
space model describing the dynamics of each agent. On the other hand, (nontrivial) standard consensus
may be achieved only under very demanding requirements, both on the Laplacian associated with the
communication graph and on the agents’ description. In particular, consensus may be achieved only if
there is a sort of “equilibrium” between the two groups, both in terms of cardinality and in terms of the
weights of the “conflicting interactions” amongst agents.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical formulation of multi-agents systems and consen-
sus problems has been of interest for a considerable length of time.
Some of the pioneering works are reported in [1-5] and references
therein. However, a decade ago, thanks to milestone contributions
such as [6-12], a wide stream of literature on these topics started
and flourished. The driving force behind considerable research ac-
tivity on this topic is the wide variety of areas where the consen-
sus problem lends itself in a natural manner. In applications such
as sensor networks, coordination of mobile robots or UAVs, flock-
ing and swarming in animal groups, dynamics of opinion forming,
etc., the problem can be formulated as that of a group of agents
exchanging information with the objective of reaching a common
decision, a consensus, by resorting to distributed algorithms that
make use of the information that each agent collects from neigh-
boring agents (see, e.g. [13-19,11,20,21]). The interested reader is
referred to [22,10] for a more complete list of references.
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A common assumption in most of the literature about consen-
sus is that agents achieve this goal through collaboration. How-
ever, in a number of contexts where the consensus is meaningful,
the interactions among agents are not necessarily cooperative. On
the contrary, in contexts like markets or social networks [23], for
instance, agents may also display non-cooperative or antagonistic
interactions with some of their neighboring agents. In social net-
works, mutual relationships between pairs of individuals may be
friendly or hostile, and this may create two antagonistic groups. In
economic systems, duopolistic regimes arise quite frequently: all
the companies producing a certain product, or providing a certain
service, are split into two competing cartels. But this is also the
case when modeling two competing teams, as it happens, for in-
stance, in sport disciplines, or in robot competitions like RoboCup.
Each individual or robot collects information regarding both the
team mates and the antagonists, and processes this data in order
to take decisions (position, speed, behavior, elevation, ...) that are
in agreement with those of their team mates. Game theory pro-
vides several examples where players are divided into two compet-
ing teams, and antagonistic interactions between the two groups
are crucial when modeling the overall system dynamics. Finally,
in biological systems, interactions between genes or chemical el-
ements may be cooperative or antagonistic in the form of activa-
tors/inhibitors.
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In graph theoretic terms, antagonistic interactions can be
taken into account by replacing the standard communication
graph, characterized by nonnegative weights, with a signed graph
[24,25] displaying both positive and negative weights. Positive
arcs correspond to cooperative interactions between agents, while
negative arcs describe interactions between antagonistic agents.
While there is considerable literature about consensus in cooperat-
ing multi-agent systems, research results pertaining to consensus
without cooperation are relatively few [26-28]. In a recent paper
[22], Altafini developed the concept of bipartite consensus among
agents with antagonistic interactions. Specifically, based on defi-
nitions and properties of signed weighted (directed or undirected)
graphs and of the associated Laplacians (see [24,29]), he introduced
the concept of bipartite consensus (or agreed dissensus). This is the
situation when agents are split into two groups such that within
each group all the agents converge to a unique decision, but the
decisions of the two groups are opposite.

By addressing the classical example of homogeneous agents
modeled as simple scalar integrators, he proved that if the signed,
weighted and connected communication graph describing the
agents’ interactions is structurally balanced, then the agents reach
bipartite consensus. On the other hand, if the interactions are
antagonistic, but not structurally balanced, the only agreement
that can be achieved among the agents is the trivial one, where all
the agents’ states converge to zero.

The main objective of this paper is to extend the results reported
in [22], by addressing the general case of N homogeneous agents
described by a generic n-dimensional linear state-space model.
This represents a natural extension of the case when agents are
modeled as simple integrators. In certain situations, agents’ status
may require more than a single variable for accurate representa-
tion. These variables may include, e.g., position and velocity, price
and production levels, etc. These decision variables are updated
based on the information collected from the neighboring agents,
and consensus must be achieved on all of them. Specifically, we
establish conditions for consensus and bipartite consensus for a
group of N homogeneous agents under the assumption that their
mutual interactions can be described by a weighted, signed, con-
nected and structurally balanced communication graph.

We show that, in this set-up, bipartite consensus can always
be reached under the fairly weak assumption of stabilizability
on the state-space model describing the dynamics of each
agent. However, nontrivial consensus to a common decision for
the two antagonistic groups can be achieved only under more
restrictive requirements, both on the Laplacian associated with the
communication graph and on the agents’ description. In particular,
consensus may be achieved only if there is a sort of “equilibrium”
between the two groups, both in terms of cardinality and in terms
of the weights of the “conflicting interactions” among agents.

Briefly, Section 2 introduces the problem formulation and for-
malizes the consensus and bipartite consensus problems. In ad-
dition, basic definitions and results regarding weighted signed
graphs and their Laplacians are reviewed, and a new technical
result regarding the Laplacian of structurally balanced graphs is
presented. Section 3 investigates the bipartite consensus prob-
lem, and it is shown there that, under the structural balance
assumption, it is possible to extend to the case of antagonistic in-
teractions and bipartite consensus the results presented in [30,31]
(see,also, [6,32,21,33]) for the consensus of high-order cooperating
agents. Section 4 explores the consensus problem, by focusing on
the case when the common trajectory that the agents converge to
is bounded, but not converging to zero. In this section, conditions
under which consensus may be achieved are investigated, and an
algorithm to design the control law that makes this possible is pre-
sented. Finally, it is shown that when the previous conditions are
not met, nontrivial consensus can never be achieved.

Notation. R is the semiring of nonnegative real numbers. For any
pair of positive integers k and n with k < n, [k, n] is the set of
integers {k, k + 1, ..., n}. The (i, j)th entry of a matrix A will be
denoted by [A]j, the ith entry of a vector v by [v];. A matrix (in
particular, a vector) A with entries in R, is called nonnegative,
and denoted by A > 0. The symbol 1y denotes the N-dimensional
vector with all entries equal to 1. The spectrum of a square matrix
A is denoted by o (A).

2. Consensus and bipartite consensus problems: statements

We consider a multi-agent system consisting of N agents, each
of them described by the same single-input continuous-time state-
space model. Specifically, x;(t), the ith agent state, i € [1,N],
evolves according to the first-order differential equation

X;(t) = Ax;(t) + bui(t), (1)

where x;(t) € R", u;(t) € R,A € R™", and b € R". The communi-
cation among the N agents is described by an undirected, weighted
and signed, communication graph [22] ¢ = (V, &, 4), where V =
{1,2, ..., N}is the set of vertices, & C V x V is the set of arcs,
and « is the matrix of the signed weights of . The (i, j)th entry
of A, [4Aljy, is nonzero if and only if the arc (j, i) belongs to &,
namely information about the status of the jth agent is available
to the ith agent. We assume that the interactions between pairs
of agents are symmetric and hence A = «'. The interaction
between the ith and the jth agents is cooperative if [A]; > 0 and
antagonistic if [4]; < 0. Also, we assume that [4]; = 0, for all
i € [1, N]. The graph § is connected if, for every pair of vertices
j and i, there is path, namely an ordered sequence of arcs
G, i1), (i1, i2), . . ., (ix—1, ix), (ix, i) € &, connecting them.

The Laplacian matrix associated with the adjacency matrix - is
defined as in [22,24,29], namely:

L:=C— A, (2)

where € is the (diagonal) connectivity matrix, whose diagonal
entries are the sums of the absolute values of the corresponding
row entries of +4, namely

[Cli= Y I[Aljl, Viell,N].

G.)e&

Therefore
DO LAl ifi=j

[L]j = § G.hee (3)
—[4lj, ifi #j.

Throughout the paper, we assume that the weighted and signed
graph g, describing the interactions among agents, is connected
and structurally balanced. This latter property means [22,24,25]
that the set of vertices V can be partitioned into two disjoint
subsets V; and V, such that for every i,j € V,, p € [1, 2], [4]; >
0, while for everyi € V,,j € Vq,p,q € [1,2],p # q,[A]; < 0.
This amounts to saying that the agents can be split into two groups,
and interactions between pairs of agents belonging to the same
group are cooperative, while interactions between pairs of agents
belonging to different groups are antagonistic. Therefore, after a
suitable reordering of the agents, we can always assume that

A1l A
A= , 4
qu Azz] (4)

where k := |V1], N —k := |Vy|, A1 = A]; € REK Ay = AL, €
Rfﬁ’_k)xw_k), while —A; € RﬁX(N_"). Under this fundamental
requirement on the mutual interactions among the agents, we
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