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a b s t r a c t 

A nonlocal Euler beam model with second-order gradient of stress taken into consideration 

is used to study the thermal vibration of nanobeams with elastic boundary. An analytical 

solution is proposed to investigate the free vibration of nonlocal Euler beams subjected to 

axial thermal stress. The effects of the nonlocal parameter, thermal stress and stiffness 

of boundary constraint on the vibration behaviors of nanobeams are revealed. The results 

show that natural frequencies including the thermal stress are lower than those without the 

thermal stress when temperature rises. The boundary-constrained springs have significant 

effects on the vibration of nanobeams. In addition, numerical simulations also indicate the 

importance of small-scale effect on the vibration of nanobeams. 

© 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied 

Mechanics. 

1. Introduction 

Nanostructures have attracted considerable attention for their 
outstanding mechanical, chemical and thermal properties 
[1–4] . Hence, nanobeams hold exciting promise as transis- 
tors, probes, sensors, actuators, and resonators in nano- 
electromechanical systems. Since the experiments are very 
difficult, and molecular dynamics simulations remain ex- 
pensive at the nano-scale, continuum elastic models have 
been widely used to study wave propagation and vibration of 
nanobeams [5–9] . 

Experimental results and molecular dynamics simulation 

show that the size effects play a major role in the me- 
chanical properties of microstructures [10–13] and nanostruc- 
tures [5,6,14] . Because of the lacking of size-dependent mate- 
rial length-scale parameter, the classical continuum elastic- 
ity theory fails to describe the structural behavior at micron- 
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and nanometer-scale accurately. To overcome this weakness, 
several nonlocal elasticity theories which incorporate the in- 
ternal material length-scale parameters, such as the couple 
stress theory [15–17] , the strain gradient theory [18–20] and the 
stress gradient theory [21–26] , have been employed to describe 
the behaviors of material with microstructure and nanostruc- 
ture. The stress gradient elasticity theory proposed by Erin- 
gen is a nonlocal model of the gradient type, which introduces 
high-order gradient of stress into the constitutive relation [21] . 
In recent years, many researchers have applied the stress gra- 
dient elasticity theory to the bending, buckling, and vibration 

analysis of nanostructures [22–26] . 
Thermal vibration analysis is needed for the nanobeams 

often subjected to thermal loading. Zhang et al. [27] devel- 
oped a double-elastic beam model for studying transverse vi- 
brations of double-walled carbon nanotubes. Benzair et al. 
[28] used the nonlocal Timoshenko beam model for free vibra- 
tion analysis of single-walled carbon nanotubes including the 
thermal effect. Murmu and Pradhan [29] developed a single- 
elastic beam model to analyze the thermal vibration of single- 
walled carbon nanotubes based on nonlocal elasticity theory. 
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Ebrahimi and Salari [30] investigated the thermal effect on the 
buckling and free vibration characteristics of the functionally 
graded size-dependent Timoshenko nanobeams subjected to 
an in-plane thermal loading. 

In the above-mentioned studies, the boundary condi- 
tions of nanobeams are all classical cases, such as free, 
hinged or clamped ones. In practice, the interaction between 

nanobeams and substrates is van der Waals force. Thus the 
boundary condition of the nanobeam is commonly elastically 
constrained. It has been widely accepted that it is very hard 

to obtain an analytical solution for beams or plates except for 
very few simple boundary cases. Thus, some efficient numer- 
ical solution techniques, such as the modified Fourier series 
method, the meshless method and the differential quadra- 
ture method have been employed to solve the vibration prob- 
lems of beams with arbitrary boundary conditions. Li and co- 
workers [31,32] and Jin et al. [33] presented a modified Fourier 
series method for the vibration of beams with general bound- 
ary conditions based on the classical Euler beam model. Kiani 
[34] used the reproducing kernel particle method to study 
the free transverse vibration of embedded single-walled nan- 
otubes with arbitrary boundary conditions by the nonlocal 
Euler beam, Timoshenko beam, and higher-order beam mod- 
els. Rosa and Lippiello [35] adopted the differential quadra- 
ture method to investigate free vibrations of embedded single- 
walled carbon nanotubes based on the Euler beam theory. 

The attempt of this work is to propose an analytical 
solution for studying the vibration of elastically-supported 

nanobeams with second-order stress gradient elastic the- 
ory subjected to thermal stress. For this purpose, the non- 
local Euler beam model with elastic boundary is presented 

in Section 2 . Then, an analytical solution for boundary value 
problems for the free vibrations of a nanobeam is derived in 

Section 3 . Vibration analysis of the nanobeams with elastic 
boundary conditions are presented and discussed in Section 4 . 
Finally, some concluding remarks are made in Section 5.

2. Nonlocal Euler beam model with elastic 
boundary 

According to Eringen’s nonlocal elasticity theory, the consti- 
tutive law between stress and strain in the one-dimensional 
case can be expressed as 

σx − μ2 ∂ 
2 σx 

∂ x 2 
= E ε x , (1) 

where E represents Young’s modulus and εx is the axial strain; 
μ= e 0 a is the nonlocal parameter reflects the influence of the 
microstructure on the strain in the nonlocal elastic material 
[21] , with e 0 a constant appropriate to each material, and a an 

internal characteristic length of the material. 
For a thin beam, the displacement components can be writ- 

ten as 

u x = −z 
∂w (x, y, t) 

∂x 
, u y = 0 , u z = w (x, y, t) (2) 

where t denotes time, and u and w are displacements of the 
middle line. The strain field can be expressed as 

ε x = −z 
∂ 2 w 

∂ x 2 
. (3) 

The relation between the shear force Q and the bending 
moment M is expressed as 

Q − ∂M 

∂x 
= 0 , (4) 

with axial force considered, 

∂Q 

∂x 
= ρA 

∂ 2 w 

∂ t 2 
− N 

∂ 2 w 

∂ x 2 
, (5) 

where ρ is the mass density of the material, A is the area of 
the cross section, and N denotes an additional axial force de- 
pendent on temperature change �T and thermal coefficient 
αT of the nanobeam, which can be expressed as 

N = −EA αT �T. (6) 

The bending moment 

M = 

∫ 
A 

z σx dA. (7) 

A combination of Eqs. (1) , (3) and (7) leads to 

M − μ2 ∂ 
2 M 

∂ x 2 
= −EI 

∂ 2 w 

∂ x 2 
, (8) 

where I is the moment of inertia of the cross section. 
Eliminating Q from Eqs. (4) and (5) yields 

∂ 2 M 

∂ x 2 
= ρA 

∂ 2 w 

∂ t 2 
− N 

∂ 2 w 

∂ x 2 
. (9) 

Then, substituting Eq. (9) into Eq. (8) , the bending moment 
M for the nonlocal Euler beam model with axial force can be 
expressed as 

M = −μ2 

( 

N 

∂ 2 w 

∂ x 2 
− ρA 

∂ 2 w 

∂ t 2 

) 

− EI 
∂ 2 w 

∂ x 2 
. (10) 

From Eqs. (4) and (10) , the shear force Q for the nonlocal 
Euler beam model can be expressed as 

Q = −μ2 

( 

N 

∂ 3 w 

∂ x 3 
− ρA 

∂ 3 w 

∂ t 2 ∂x 

) 

− EI 
∂ 3 w 

∂ x 3 
. (11) 

Substituting Eq. (11) into Eq. (5) , the governing equation of 
the nonlocal elastic beam can be derived as 

[ EI + μ2 N] 
∂ 4 w 

∂ x 4 
− N 

∂ 2 w 

∂ x 2 
+ ρA 

∂ 2 w 

∂ t 2 
− μ2 ρA 

∂ 4 w 

∂ x 2 ∂ t 2 
= 0 . (12) 

In particular, the new beam model can be degenerated to 
the classical Euler beam model with axial force, if the material 
length-scale parameter is set to be zero. 

The equivalent continuum model of a nanobeam sup- 
ported by an elastic medium at both ends is shown in Fig. 1 . 
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