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A B S T R A C T

This paper addresses the problem of acoustic noise cancellation by adaptive filtering algorithms. To deal with
acoustic noise reduction and speech enhancement problems, we propose to use the modified predator-prey
particle swarm optimization (MPPPSO) to design a new dual adaptive noise canceller based on swarm in-
telligence heuristic search. The proposed dual MPPPSO algorithm improves the single-channel PPPSO algorithm
convergence speed behavior when a large filter length is used. Also, the proposed algorithm leads to a low
steady-state error in comparison with the single-channel PPPSO algorithm behavior which fails with large filters
length and non-stationary input. The proposed dual MPPPSO algorithm shows significant improvement in the
system mismatch (SM) and Output signal-to-noise ratio (SNR) values. We present the simulation results of the
proposed dual MPPPSO algorithm that confirm its superiority and good performances in comparison with the
single-channel PPPSO and the two-channel normalized least mean square (2C-FNLMS) algorithm.

1. Introduction

Acoustic noise cancelling refers to the improvement in the quality of
degradation of speech signal caused by different types of noise. Several
methods were proposed to resolve the problem of adaptive noise can-
cellation (ANC) [1], by the use of adaptive filtering algorithms. The
most used adaptive filtering algorithm is the least mean square (LMS)
[2], and others ones based on stochastic and meta-heuristic optimiza-
tion techniques such as artificial bee colony algorithm (ABC) [3], ge-
netic algorithm (GA) [4,5], and particle swarm optimization (PSO) [5].

The LMS-based algorithms which are widely used due to their
simplicity in implementation and computation suffer from local minima
problem and the global minima are seldom reached. In order to over-
come this problem, the stochastic and meta-heuristic optimization al-
gorithms are able to avoid local minima problem. Various meta-heur-
istic approaches were adopted to solve the ANC problem. In [7,8], the
authors suggested to use adaptive genetic algorithm, standard particle
swarm optimization and its derived version, gravitational search algo-
rithm (GSA) and bat algorithm (BA) to be applied in speech enhance-
ment and acoustic noise reduction application.

In this paper, we propose a new dual modified predator-prey par-
ticle swarm optimization (MPPPSO) that can be used as a blind speech
signal enhancer (we only suppose the knowledge of noisy observations
that are, in our paper, generated by a convolutive mixing model [9]).

The proposed MPPPSO algorithm is based on the combination between
the single-channel predator-prey particle swarm optimization (PPPSO)
[10,11], and the forward blind source separation (FBSS) structure.

This paper is organized as follows, in Section 2, we present the
convolutive mixing model that generates the noisy observations, and
we focus on the forward blind source separation (FBSS) structure.
Section 3 describes the two-channel normalized least mean square (2C-
FNLMS) and the two-channel variable step size forward algorithm (2C-
VSSF). Then our proposed algorithm is presented in Section 4, and then
Section 5 is reserved to the simulation results and discussions. Finally,
we conclude our work in Section 6.

2. Problem statement

2.1. Simplified convolutive mixing model

In this paper, we consider the simplified convolutive mixing model
proposed in [9]. In Fig. 1, the input signals s n( ) and b n( ) are the speech
signal, and the punctual noise respectively.

According to Fig. 1, two microphones placed at the output of the
mixing signal provide two noisy observations p n( )1 and p n( )2 . The
parameters h n( )12 and h n( )21 represent the cross-FIR filters between the
two channels. We suppose that the speech and the noise signals are
statistically independent. The two noisy observations are given by:
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= + ∗p n s n b n h n( ) ( ) ( ) ( )1 21 (1)

= + ∗p n b n s n h n( ) ( ) ( ) ( )2 12 (2)

where (∗) represents the convolution operator.

2.2. Acoustic noise cancelling by forward blind source separation (FBSS)
structurer

In this paper, we consider the forward blind source separation
(FBSS) structure shown by Fig. 2 [9,13,14], the observed signals p n( )1
and p n( )2 are the inputs of the adaptive FIR filters w n( )12 and w n( )21
respectively, The output signals, e n( )1 and e n( )2 , of the FBSS structure
are given by:

= − ∗e n p n p n w n( ) ( ) ( ) ( )1 1 2 21 (3)

= − ∗e n p n p n w( ) ( ) ( )2 2 1 12 (4)

The estimations of the speech and noise signal are obtained when
these solutions are got, i.e. =w n h n( ) ( )21 21 , =w n h n( ) ( )12 12 and we can
write ̂=e n s n( ) ( ),1 and ̂=e n b n( ) ( )2 , where ̂s n( ) and ̂b n( ) are given as
follows:

̂ = ∗ − ∗s n n δ n h n h( ) s( ) [ ( ) ( )12 21 (5)

̂ = ∗ − ∗b n n δ n h n h( ) b( ) [ ( ) ( )12 21 (6)

In addition, the filter coefficients are updated by the adaptation
algorithm using the error signals e n e n( )and ( )1 2 , a selected algorithm
updates the coefficient of the adaptive filter whose output gives the
estimated noise. Furthermore, the selected algorithm still minimizing
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Fig. 1. Two-microphone mixing model with two cross-FIR filters.
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Fig. 2. Two-channel forward blind source separation FBSS structure.

Table 1
Two-channel normalized least mean square (2C-FNLMS) [13].

Computation details Variables

1. Initialize − = − =w w( 1) 0, ( 1) 012 21
2. = doforn k1:
Estimation of the output signals:

3. = − −w pe n p n n n( ) ( ) ( 1) ( )T
1 1 21 2

4. = − −w pe n p n n n( ) ( ) ( 1) ( )T
2 2 12 1

Filters coefficient adaptation:
5. = − +

+
w wn n μ e n( ) ( 1) ( )( )p

p
n

ξ n12 12 12 2
1( )

1( )2

6. = − +
+

w wn n μ e n( ) ( 1) ( )( )p
p

n
ξ n21 21 21 1

2 ( )

2 ( )2

7. = +n n 1
8. end for

L: adaptive filter length.k: number of iteration.w12:The adaptive FIR filters: = … −w n w n w n w n( ) [ ( ), ( ), , ( )]L T12 12,0 12,1 12, 1 w21:The
adaptive FIR
filters: = … −w n w n w n w n( ) [ ( ), ( ), , ( )]L T21 21,0 21,1 21, 1 = − … − +p n p n p n p n L( ) [ ( ), ( 1), , ( 1)]T1 1 1 1 = − … − +p n p n p n p n L( ) [ ( ), ( 1), , ( 1)]T2 2 2 2

μ12: First fixed step-size: < <μ0 212 μ21: Second fixed step-size < <μ0 221 ξ : Small positive constants that avoids division by zeros.

Table 2
Two-channel variable step size forward algorithm (2C-VSSF) [14].

Computation details Variables

1. Initialize − =w ( 1)12 0, − =w ( 1)21 0, − =g ( 1)12 0, − =g ( 1)21 0
2. = doforn k1:
Estimation of the output signals:

3. = − −w pe n p n n n( ) ( ) ( 1) ( )T
1 1 21 2

4. = − −w pe n p n n n( ) ( ) ( 1) ( )T
2 2 12 1

Filters adaptation:
5. = − +

+
w wn n μ n e n( ) ( 1) ( ) ( )( )p

p
n

ξ n12 12 12 2
1( )

1( )2

6. = − +
+

w wn n μ n e n( ) ( 1) ( ) ( )( )p
p

n
ξ n21 21 21 1

2 ( )

2 ( )2

Step-sizes adaptation:

7. =
+

μ n μ( ) g
gmax

n
n12 12,

12 ( )2

12 ( )2 δ

8. =
+

μ n μ( ) g
gmax

n
n21 21,

21( )2

21( )2 δ

9. = − + − −
+

g gn n( ) α ( 1) (1 α ) e
p

e n n m
n γ12 1 12 1

2 ( ) 1( )

1( )2

10. = − + − −
+

g gn n( ) α ( 1) (1 α ) e
p

e n n m
n γ21 2 21 2

1( ) 2 ( )

2 ( )2

11. = +n n 1
12. end for

L: adaptive filter length.k: number of iteration.w12:The adaptive FIR
filters: = … −w n w n w n w n( ) [ ( ), ( ), , ( )]L T12 12,0 12,1 12, 1 w21:The adaptive FIR

filters: = … −w n w n w n w n( ) [ ( ), ( ), , ( )]L T21 21,0 21,1 21, 1 = − … − +p n p n p n p n L( ) [ ( ), ( 1), , ( 1)]T1 1 1 1

= − … − +p n p n p n p n L( ) [ ( ), ( 1), , ( 1)]T2 2 2 2 μ n( )12 : First variable-step-size: < < <μ n μ0 ( ) 2max12 12, μ n( )21 :

Second variable-step-size < < <μ n μ0 ( ) 2max21 21, α1, α2:Small positive constants defined between 0 and 1.ξ ,
γ : Small positive constants .δ: Positive constants to control the variation of μ n( )12 and μ n( )21 .m: Delay

index, = … −m L0, 1, 2, , 1. = … −g n g n g n g n( ) [ ( ), ( ), , ( )]L
T

12 12,0 12,1 12, 1 = … −g n g n g n g n( ) [ ( ), ( ), , ( )]L
T

21 21,0 21,1 21, 1
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