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A B S T R A C T

In the present work, the wave propagation in a viscoelastic phononic crystal rod with internal periodic dis-
sipative resonators is investigated. The Kelvin-Voigt model is utilized to describe the viscoelastic behavior of host
materials. The Bloch theorem is adopted to analyze the band structure of the rod. The effect of the free oscillation
frequency of the resonators on the band structure is firstly studied. It is found that by tailoring the dynamic
characteristics of the resonators, the coupling of the Bragg scattering (BS) and local resonance (LR) mechanisms
can be harnessed to effectively widen the band gaps and enhance the wave attenuation. Then, the effects of the
viscosity of the host materials and the damping of the resonators on the band structure, especially the two nearly
coalescent band gaps (the first Bragg and LR ones), are investigated respectively. Furthermore, the combined
effect of the two dissipative sources is also discussed. The present work is expected to be helpful to the design
and applications of phononic crystals and metamaterials.

1. Introduction

Phononic crystals (PCs) are periodic structures made of two or more
materials with different elastic properties. They possess frequency band
gaps within which wave propagation is forbidden, independent of the
wave vector [1–3]. Such band gap feature of PCs can be used in many
fields, such as acoustic/elastic filters, acoustic waveguides, noise con-
trollers, and vibration shields [4]. Mead [5] first studied the wave
propagation in a periodically supported infinite beam, and revealed the
band gap feature of this structure. Ruzzene et al. [6,7] applied the
concept of periodic construction to a sandwich plate. They found that
by placing negative Poisson’s ratio core materials with different geo-
metries periodically in the plate, the propagation of waves over speci-
fied frequency bands and in particular directions can be obstructed.

In addition, the exploitation of structural effects such as topology,
geometry and local resonance has led to the development of material
systems with extraordinary electromagnetic and acoustic properties,
i.e., so called “metamaterials” [8–10]. Taking acoustic metamaterials
(AMMs) for instance, local resonance leads to a strong attenuation
which has significant implications for the suppression of sound trans-
mission [10,11] and mechanical vibrations [12–18]. The concept of

local resonance has been explored to design metamaterial beams and
plates with periodic resonator arrays [19–21].

Most studies on wave propagation in PCs and AMMs mainly focus
on elastic medium. However, damping is an intrinsic property of ma-
terials and may have a significant influence on structural dynamic re-
sponses. To predict the performance of PCs and AMMs more accurately,
it is necessary to take dissipative effects into consideration [22]. Mead
[23] first investigated the effects of viscous and hysteretic damping on
the wave number for a one-dimensional (1D), periodically supported
beam. It is found that band gaps became less distinct if the effect of
damping was considered, because complex wave numbers existed
throughout the frequency spectrum. This result was reproduced quali-
tatively by Tassilly [24] in his study on damped PC beams. Merheb
et al. [25] used the finite difference time domain method to investigate
the transmission of acoustic waves in viscoleastic rubber-air PCs. Be-
sides these researches on PCs, Manimala and Sun [26] studied the wave
attenuation of 1D dissipative AMMs by considering discrete lattices
involving local resonators with different types of viscous damping or
hysteretic damping. Chen et al. [27] also adopted similar analysis
method to study 1D viscoelastic AMMs with mass-in-mass viscous local
resonators. Dissipative metamaterial plates with tunable local
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resonators [28] and two-dimensional (2D) viscoelastic metamaterials
[29] were also studied by using the simple Kelvin-Voigt model. Re-
cently, more realistic viscoelastic models, such as generalized Maxwell
models, were employed to study 2D viscoelastic AMMs by Krushynska
et al. [30] and Lewinska et al. [31]. A more recent work even harnessed
the combined attributes of AMMs and PCs as well as viscous damping to
generate the so called “metadamping” effect [32]. In all these studies,
the frequency has a prescribed real value, such that the corresponding
temporal parameter = −λ iω is pure imaginary. This case represents a
class of researches on wave propagation incorporating dissipative ef-
fects and corresponds to a steady-state situation where the medium is
driven by a given frequency. Such a case is called “prescribed wave” in
the present paper.

Alternatively, a wave with its amplitude decreasing with time and
its frequency un-prescribed is referred to as “free wave”. In this per-
spective, Cady [33] studied propagation of longitudinal waves in
homogeneous rods. He allowed the temporal parameter λ to become
complex, i.e., = − ±λ ξω iωd, where ωd was the damped propagation
frequency, and −ξω was the temporal attenuation constant. Mukherjee
and Lee [34] investigated wave propagation in one-dimensional PCs,
and developed the dispersion relations for both the damped frequency
and the temporal attenuation constant. Hussein [35] presented the
band structure in the Brillouin zone and the damping ratio corre-
sponding to each Bloch wave, and demonstrated that the damping
qualitatively altered the shape of the dispersion curve. They also ex-
tended their analysis to the study of a 2D PC, and revealed intriguing
phenomena such as branch overtaking and branch cut-off [36]. Sprik
and Wegdam [37] analyzed the propagation of sound waves in three
dimensional periodic lattices of solid-solid and solid-liquid composites.
Zhang et al. [38] investigated the absolute acoustic band gaps for two-
dimensional periodic arrays of silica cylinders in viscous liquid, and
found that when the viscous penetration depth was comparable to the
structural length scale, the structures possessed large absolute acoustic
band gaps comparing with those without viscosity. It is also noted that
Andreassen and Jensen [39] analyzed the bandgap of a 2D dissipative
PC for both the two cases of free and prescribed wave propagation, and
pointed out that comparable results are predicted for small to medium
amounts of material dissipation and for long-wavelength waves.

Through the above literature review, it is found that lots of works
have been conducted on wave propagation in viscoelastic PCs and
AMMs. Although wave attenuation of viscoelastic PCs with internal
dissipative resonators has been considered by some researchers such as
Krushynska et al. [30] and DePauw et al. [32], the coupling of Bragg
scattering (BS) and local resonator (LR) mechanisms in such kind of
dissipative systems, or phononic resonators as termed by DePauw et al.
[32], has not been completely clarified yet. In order to at least partly
address this problem, the wave propagation of a 1D viscoelastic PC rod
with internal dissipative resonators is studied in the present work, with
both the two cases of free and prescribed wave propagation taken into
account. It is found that for both non-dissipative (purely elastic) and
dissipative PC rods, the BS-LR coupling can be harnessed to effectively
widen the two nearly coalescent band gaps (the Bragg and LR ones,
respectively) and enhance the attenuation via tailoring the dynamic
characteristics of the resonators. The effects of two dissipative sources
(the viscosity of the host materials and the damping of the internal
resonators) on the BS-LR coupling and their significant implications to
wave propagation are also discussed in detail.

The rest of the present work is structured as follows. In Section 2,
the governing equations for each part of the PC rod as well as the in-
ternal resonator within each unit cell are firstly derived, and then by
employing the Bloch theorem, two eigenvalue problems are formulated
respectively in Subsections 2.1 and 2.2 for cases of prescribed and free
wave propagation. The band structures of the PC rod with internal re-
sonators under both the non-dissipative and dissipative conditions are
presented in Section 3, and the effects of the free oscillation frequency,
mass, and damping of the internal resonators as well as the viscosity of
the host materials are discussed in detail. At last, some conclusions are
drawn in Section 4.

2. Formulation

As shown in Fig. 1, a viscoelastic PC rod with periodic internal re-
sonators is considered. The rod is composed of repetition of alternating
Material 1 with length a1 and Material 2 with length a2. The lattice
constant is denoted by a which is equal to +a a1 2. The origin of the
local coordinate is located at the junction of Material 1 and Material 2.
The internal resonators, each with mass m, spring stiffness k and
damping c, are fixed at the left end of each unit cell periodically.

The motion equation of the rod in the longitudinal direction reads:
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where =r 1, 2 is used for distinguishing Material 1 from Material 2,
=σ σ x t( , )r r( ) ( ) , A, =f f x t( , )r r( ) ( ) , ρr , and =u u x t( , )r r( ) ( ) denote the

stress, the cross-sectional area of the rod, the external force, the mass
density, and the longitudinal displacement, respectively. As indicated,
all these quantities, except for the cross-sectional area and the mass
density, are dependent of the position x and the time t.

Due to the diversity and complexity of dissipative mechanisms, the
development of a universal damping model stands as a major challenge.
The simple Kelvin-Voigt model, which consists of a spring and a
dashpot connected in parallel, is widely used to describe the time-de-
pendent property of viscoelastic medium [40–44]. It should also be
noted that due to the lack of enough fitting parameters, the Kelvin-
Voigt model may not fit well with experimental data. To solve this
problem, some more sophisticated and experimentally validated
models, such as the generalized Kelvin-Voigt model or the generalized
Maxwell model, could be used instead. However, via comparison with a
validated generalized Maxwell model, Krushynska et al. [30] pointed
out that the Kelvin-Voigt model provides reliable results concerning the
wave dispersion, except in a very low frequency range which is sig-
nificantly below band gaps and not of a critical importance. Con-
sidering this reason and for the sake of simplicity, the Kelvin-Voigt
model is adopted here to describe the viscoelastic behavior of the host
materials, so as to focus on the effect of viscosity on the coupling of the
BS and LR mechanisms. According to the Kelvin-Voigt model, the
constitutive relation reads:
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where Er is the Young’s modulus, and ηr is the viscosity. In the absence
of body forces, substituting Eq. (2) into Eq. (1) yields the motion
equation of the viscoelastic PC rod:
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Fig. 1. Schematic of a viscoelastic phononic crystal
rod with internal mass-dashpot-spring resonators,
where is the lattice constant, E1, ρ1 and η1 (E2, ρ2
and η2) are the Young’s modulus, mass density and
viscosity of Material 1 (Material 2), and m, k and c
are the mass, spring stiffness and damping of each
resonator, respectively.
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