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A B S T R A C T

The differential quadrature method is employed to solve the differential equation governing the in-plane moving
rectangular viscoelastic plate with concave or convex cross sections. The boundary conditions of the plate are
specified as simply supported-free (SFSF) and clamped-simply supported (CSCS). Plots showing the influence of
the cross section's form on the plate’s stability are presented and it is observed that the plate generally undergoes
divergence instability but coupled mode instability also occurs for SFSF boundary conditions. Coupled mode
instability appears when the cross-section is convex or varies linearly. Also, the increase of the thickness ratio
plays an increasing role on the critical instability values of the moving speed.

1. Introduction

Plates with varying thicknesses have shown their great usefulness
due to their potential applicability in many engineering domains. For
example, varying thickness can lead to the design of lighter structures
or reduce the quantity of material used in their manufacture. The above
mentioned considerations explain why plates with non-uniform thick-
nesses have been studied extensively [1–6].

Moving plate-type structures may lose stability during their manu-
facturing process or when they are operating due to the increase in the
moving speed. Literature indicates that such structures may undergo
dynamic or static instability depending on the applicable boundary
conditions [7–10].

Viscoelasticity itself appears to play a great role on the nature of the
instability that may occur during the moving process of plates [11–13].
Meanwhile, axially moving viscoelastic plates with varying thickness
have not yet been studied extensively according to the existing litera-
ture. The only existing previous work is Zhou and Wang [14] who
studied the moving viscoelastic plate with the thickness varying para-
bolically in the y-direction. The effects of the thickness ratio on the
stability of SSSS and CSCS plates were carried out in detail [14]. To the
authors’ best knowledge, there is presently no work involving the study
of the influence of both concave and convex cross sections on the sta-
bility of the axially moving viscoelastic plates.

The differences between our work and that of [14] is that the
thickness in the present study varies in the x-direction, leading there-
fore to a different differential equation. Consequently, the instability of

the plate is qualitatively and quantitatively different from what was
observed in the previous studies. Here three kinds of non-uniform
thicknesses are considered whereas in [14], only a plate with concave
cross section was considered.

Moreover there is no work in the literature studying the stability of
axially moving viscoelastic plates with varying thickness using differ-
ential quadrature method considering free edges. That absence can be
due to the complicated form of the governing differential equation or
the implementation of free edges using differential quadrature method.

The main aim of the present work is to derive the equation of axially
moving viscoelastic plates with linear, concave and convex cross sec-
tions in the x-direction by using the Kelvin-Voigt law of viscoelasticity.
The differential quadrature scheme is then employed to solve the cor-
responding fourth order differential equation. We first compare our
results with those available in the literature to verify the convergence of
DQM by using two different boundary conditions which are Simply
supported (SSSS) and clamped (CCCC). Afterward, the equation to
compute the complex eigenvalues of the problem is analyzed and the
effects of cross sectional shapes on the stability of the system are stu-
died for CSCS and SFSF boundary conditions.

2. Equation of motion of axially moving viscoelastic plate with
varying thickness

The theoretical equation of vibration of axially moving viscoelastic
plate with varying thickness is established in this section. The rectan-
gular plate has dimensions a and b along x and y directions,
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respectively, and varying thickness h x( ) along the z axis. h0 and ha are
thicknesses at =x 0 and =x a, respectively. Three cases of non-uniform
thickness are considered, namely, linearly varying thickness shown in
Fig. 1, concave and convex cross sections presented in Figs. 2 and 3. The
Young’s modulus of the material is denoted by E, its Poisson’s ratio by ν
and density by ρ.

The strain-displacement relation according to the Kirchhoff plate
theory is as follows:
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where u v w, , are displacement components in the x, y and z directions,
respectively, εx and εy are the normal strain components, and γxy is the
shear strain component.

The plate obeys the Kelvin-Voigt constitutive behavior of viscoe-
lasticity leading to the following stress–strain relations [15–16];

= + =G η σ Kεs e e2 2 ̇ , 3ij ij ij ii ii (2)

where K, η, G denote the bulk modulus, viscoelastic coefficient and
shear modulus, respectively. Their expressions are = −K E ν/3(1 2 ) and

= +G E ν/(1 2 ). sij and eij represent the deviatoric tensors of stress and
strain, respectively, while sii and σii are, respectively, the spherical
tensors of strain and stress. Let (Mx, My) be the bending moments and
(Mxy, Myx) the twisting moments. They are linked to the stress by the
following relations:
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where σx and σy are the normal stress components, and σxy and σyx are
the shear stress components. Considering that the plate is moving with

a speed ϑ, the equation governing the vibrations of axially moving
viscoelastic plate with non-uniform thickness, in terms of moments, is
given by
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After performing a Laplace transformation of Eq. (4), one gets a new
equation with Laplace transformations of moments. Taking into ac-
count Eqs. (1) and (3), and the transformations performed in [15–18],
the differential equation governing the vibration of the axially moving
viscoelastic plate with non-uniform thickness is obtained as:
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In order to facilitate the computational process, the following the
dimensionless variables are introduced
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Introducing Eq. (7) into Eq. (5) leads to the dimensionless form of
the governing equation of the axially moving viscoelastic plate with
varying thickness. Since three different profiles of non-uniform plate
will be used, three equations are derived accordingly after expressing
the transverse displacement as:

= −w X Y τ W X Y ωτ( , , ) ( , )exp( 1 ) (8)

where ω is the dimensionless complex frequency number. Considering
Eqs. (5)–(8) and the corresponding form of the non-dimensional
thickness =h X h x h( ) ( )/ 0 , the equations of motion are derived as fol-
lows:

2.1. Linearly varying thickness

In this case, = + −h X h h X( ) 1 ( / 1)a 0 and the dimensionless gov-
erning equation is:

Fig. 1. Axially moving viscoelastic plate with linearly varying thickness.

Fig. 2. Axially moving viscoelastic plate with concave cross section.

Fig. 3. Axially moving viscoelastic plate with convex cross section.
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