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A B S T R A C T

In this paper, we propose a framework that detects falls by using acoustic Local Ternary Patterns (acoustic-LTPs)
by analyzing environmental sounds. The proposed method suppresses silence zones in sound signals and dis-
tinguishes overlapping sounds. Acoustic features are extracted from the Separated source components by using
the proposed acoustic-LTPs. Subsequently, fall events are detected through a support vector machine (SVM)
based classifier. The performance of the proposed descriptor is evaluated against state-of-the-art methods that
are applied on well-known sound databases. A comparative analysis demonstrates that the proposed descriptor is
more powerful and reliable in terms of fall detection than other methods, and it also performs well in a multi-
class environment. Moreover, the proposed descriptor possesses a rotation invariant property, and therefore, it
demonstrates significant resistance against the rotated sound signals.

1. Introduction

Elderly people living alone face distress when they fall and are
unable to call for help. In the case of elderly people, a fall may result in
life changing injury, severely affecting the quality of life. Moreover, a
protracted delay in first aid after a fall further increases the risk of
mortality [1,2]. Therefore, early fall detection is crucial to provide
timely necessary help, avoid complications, and reduce hospitalization
costs.

In the literature, fall detection for elderly people has been proposed
using either wearable devices with sensing technologies based on ac-
celerometers or through environmental sensors, i.e., pressure sensors,
microphones, video cameras, and floor vibration sensors installed at
various locations throughout a building [3–6]. Wearable devices used
for fall detection are inconvenient and obtrusive for patients. In [7], a
Doppler radar-based fall detection method was proposed to recognize
human activity. In [8], fall detection was performed using Radar’s ef-
fective non-intrusive sensing modality by detecting human motion. In
[6], a wavelet transform based method was used to detect human falls
using a ceiling mounted Doppler range control radar. The major
drawback of using a radar-based Doppler system is their limited ap-
plicability. On the other hand, the privacy issues are convoluted in
video based methods.

Of the various environmental sensor-based approaches, an acoustic
analysis of environmental sounds provides an effective alternative to
overcome the drawbacks of both wearable and non-wearable solutions
[9,10]. Li, Ho et al. proposed an acoustic analysis for fall detection
using the Mel-frequency Cepstral Coefficients (MFCC) features and
nearest neighbor (NN) classifier [11]. Shaukat, Ahsan et al. performed
daily sound recognition for elderly people using the MFCC, Linear
Predictive Coding (LPCs) and non-spectral features [12]. The main
drawback of these methods is the selection of many irrelevant features
that negatively affect the results of the classification [13]. Another
drawback is the inherent complexity that makes the combination less
suitable to implement with real time systems. Zigel, Litvak et al. ana-
lyzed floor vibration waves and fall sounds in combination for fall de-
tection [13]. Khan, Yu et al. presented a fall detection system using
acoustic signals collected from sounds of footsteps [14]. Popescu and
Mahnot classified MFCC features through a nearest neighbor (NN),
support vector machines (SVM), and Gaussian mixture classifiers for fall
detection [15]. The common reason to use MFCCs for fall detection are
the lower dimensionality of features [16]. However, during the audio
signal acquisition, several environmental factors affect this process and
induce noise in the collected sound data. Also, various operating con-
ditions also influence the extracted MFCC features and deteriorate their
quality, and these limitations can result in a mismatch when MFCCs are
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used for classifier training and recognition of a fall event [14]. In ad-
dition, MFCC feature extraction is also a computationally complex
process and consequently becomes difficult to implement using hard-
ware devices. Different feature extraction techniques can be combined
with MFCC to improve the performance by reducing the effects of noise,
further increasing the hardware implementation costs. For such rea-
sons, a more effective feature extraction technique needs to be carried
out to ensure a better classification performance in fall detection.

In this letter, we propose a novel feature extraction scheme for
acoustic signals through acoustic Local Ternary Patterns (acoustic-LTP).
The LTP feature descriptors were initially proposed for face recognition
[17]. However, such features have never been reported to represent
audio signals, which are predominantly 1-D in nature. In addition, the
concept of uniform and rotation invariance for audio signals has also
been introduced. We emphasize that the rotation invariance is also a
fundamental requirement for audio descriptors.

2. Proposed fall detection framework

2.1. Silent zone suppression

A general architecture of a fall detection framework is shown in
Fig. 1. In the first step, an input audio signal is processed to suppress the
silence zones. When an analog audio signal y t( ) is captured from the
environment for small intervals of time, it is sampled to obtain a dis-
crete-time signal ′y n[ ] consisting of ′N samples. The discrete input
signal is divided into ′F non-overlapping frames/windows with a fixed
length l. Let ∈ = ⋯q iΩ , 0, ,7i p , and qi is the ith neighboring sample in
the neighborhood Ωp centered at p. The discrete audio signal ′y n[ ] has
an amalgamation of various audio streams comprising a living en-
vironment, including the sound of a fall. The audio stream also contains
silence zones which need to be suppressed. By using the HMM model
[18] and the FAST-ICA [19], low and high frequency signals are dis-
criminated. The posterior probability for the acoustic events is larger
than the posterior probability of the silence period. The frames be-
longing to the acoustic events, having higher posterior probabilities, are
segmented from the sources through the FAST-ICA algorithm. Thus, a
source signal y n[ ] with N samples and F frames is available for further
processing.

2.2. Acoustic Local Ternary Patterns

In the second step, the acoustic features of the y n[ ] signal are ex-
tracted through the proposed acoustic Local Ternary Patterns (acoustic-
LTP). Acoustic-LTP are locally computed by encoding each frame Ωp of
the audio signal y n[ ]. To compute the ternary pattern, we compute the
magnitude difference between the central p and the surrounding sam-
ples qi. Using a threshold t (t= 0.00008) signal values in the range of
width ± t around the central sample p are quantized to zero. Values
above +p t are quantized to 1 and below −p t are quantized to −1.
Hence, a three-valued function s is given by:
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where s q p t( , , )i represents the acoustic signal using a three-valued
ternary pattern. To reduce the number of patterns, they are further split
into upper s (.)u and lower s (.)l patterns. In the s (.)u pattern, only +1
values are retained while all other values are replaced with zeros.
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Similarly, in s (.)l , −1 values are retained as 1 while all other values are
replaced with zeros.
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The procedure of computing acoustic-TLP is shown in Fig. 2. Uni-
form patterns are well-known for computer vision applications [17].
They capture most of the attributes of a signal. The ratio uniform pat-
terns is very high as compared to non-uniform patterns. Among the
patterns in s (.)u and s (.)l , the upper uniform patterns s (.)u

uni and lower
uniform patterns s (.)l

uni are computed and encoded through their dec-
imal values.
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For the feature descriptor, two histograms from the upper and lower
codes are computed. For each uniform pattern, one bin is assigned and
all non-uniform patterns are grouped into a single bin.
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where k denotes the histogram bins corresponding to the uniform
acoustic-LTP codes and δ (.) is the Kronecker delta function.

We observed that the first twenty uniform patterns from the upper
and lower patterns are sufficient to capture all variations in the data.
Thus, the dimension of the feature vector is two times as long as the
dimension of each histogram. The 40-dimentional feature vector x is
formed by concatenating two histograms.

=x h h[ ]u l (8)

2.3. Classification

Finally, fall and non-fall events are classified through a classifier
trained using support vector machines (SVM) [20]. For the learning
classifier, training data with fall and non-fall audio features with known
targets, consisting of M pairs = ⋯y i Mx( , ), 1, ,i i( ) ( ) , are prepared
where ∈ −y {1, 1}i( ) specifies the fall and non-fall classes. Hyperplanes
linearly separating the two classes are given as,

⎧
⎨⎩

+ ⩾ =
+ < = −

b if y
b if y

w x
w x

1, 1
1, 1

T i i

T i i

( ) ( )

( ) ( ) (9)Fig. 1. Architecture of the proposed fall detection framework.

Fig. 2. Acoustic Local Ternary Pattern (acoustic-LTP) Computation.
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