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A B S T R A C T

The vibro-acoustic properties of three-layered sandwich elements depend on the bending stiffness of the
structure. It is found that the apparent bending stiffness of a sandwich beam depends on frequency, its length and
boundary conditions. A beam with free ends appears stiffer than the same beam clamped at both ends. The
apparent bending stiffness of a sandwich beam with clamped ends decreases as the length of the beam is re-
duced. The opposite is the case for a beam with free ends. A method for estimating the material parameters of a
sandwich beam is described. The frequency and space averages of the point mobility of a finite sandwich beam is
found to be equal to the point mobility of an infinite sandwich beam of the same type. Coupling loss factors
between sandwich beam elements for some simple types of junctions are given.

1. Introduction

Sandwich elements, or building blocks, with lightweight cores have
been used since the days of the Romans. Sandwich elements are
nowadays not only used for buildings but also by the vehicle industry.
The term sandwich element refers to a structure with a fairly thick
lightweight core with thin laminates bonded to each side of either a
foam or honeycomb core. This type of construction combines low
weight with high strength. The aim has always been to reduce the
weight as much as possible while maintaining the strength of the
structure. However, for a vehicle manufacturer not only weight and
safety requirements but also comfort criteria for driver and passengers
must be considered. A drawback with lightweight and stiff structures is
their often poor acoustic properties. Thus the added challenge is to
optimize the acoustic properties of sandwich structures while main-
taining low weight and high strength of the structure. Any optimizing
scheme requires a good understanding of the vibro-acoustic properties
of the material being used.

The sound pressure levels in a traditional vehicle manufactured
from metal plates and beam elements can to a certain extent be esti-
mated by means of numerical methods such as FEM, BEM, SEA and
various hybrids of these techniques. The numerical methods in com-
bination with measurements on real structures can be used to predict
the acoustic quality already at the design phase of a new model.
However, for a product completely or partially made of sandwich ele-
ments the same prediction tools developed for thin plate elements
cannot readily be used. The reason is that the dynamic properties of
sandwich elements strongly depend on frequency as demonstrated in

[1] through [4]. The vibration of thick structures and sandwich ele-
ments are discussed in the Refs. [5–22]. For any prediction of noise
levels in a vehicle vibro-acoustic properties like sound transmission
loss, sound radiation ratio, energy flow, modal densities and coupling
loss factors must be modelled for all construction elements which are
part of the entire structure.

Various models for the prediction of the sound transmission loss and
the sound radiation ratio for sandwich structures are presented in Refs.
[1] and [4], and [10–13]. The influence of boundary conditions and
plate dimensions are not considered in these references. In [1] the
concept of an apparent frequency dependent bending stiffness is in-
troduced to calculate the sound transmission loss of sandwich struc-
tures. Lu and Xin have in [23] presented a number of numerical models
for calculating the acoustic properties of sandwich structures.

2. Sandwich elements with foam or honeycomb cores

In general sandwich or honeycomb constructions are symmetric
with respect to the centreline. The Young’s modulus for a laminate is
high and much higher than the corresponding modulus for the core. A
laminate can be treated as thin satisfying Kirchhoff plate or Bernoulli-
Euler beam models as long as the wavelength for pure bending waves
propagating in the structure is larger than six times the thickness of the
plate as suggested by Heckl [24].

A honeycomb core can be modelled as an equivalent foam core [4].
In general both the in-phase and anti-phase motion of the laminates
must be considered. However, for typical foam and honeycomb cores,
the stiffness of the core material in the direction perpendicular to the
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laminates is sufficiently high to allow only the in-phase motion of the
laminates except in the very high frequency range.

The lateral deflection of a sandwich panel is primarily caused by
bending but also by shear in and rotation of the core. The total lateral
displacement w of a sandwich beam is a result of the angular dis-
placement due to bending of the core as defined by β and the angular
displacement γ due to shear in the core. For a beam oriented along the
x-axis of a coordinate system ∂ ∂ = +w x γ β/ . The differential equations
governing w, β and γ can be determined using Hamilton’s principle as
discussed in [2,4]. In deriving the equations governing the lateral dis-
placement of the structure shown in Fig. 1 symmetry of the beam is
assumed. However, corresponding differential equations can be derived
for non-symmetric sandwich beams. The identical laminates shown in
Fig. 1 have a Young’s modulus El, bending stiffness D2, density ρl and
thickness h. The effective shear stiffness of the core is Gc, its Young’s
modulus Ec, its equivalent density ρc and its thickness H. The parameter
Gc is for a thick beam, plate or core not necessarily equal to the shear
stiffness G of the material as suggested by Timoshenko [6]. As com-
pared to the laminates the core itself is assumed to have a very low
modulus of elasticity Ecx in the x-direction. It is assumed that foam and
honeycomb cores can be modelled in the same way by assuming that
shear and bending stiffness representing some space averages for the
core. In the y-direction, the core is considered to be sufficiently stiff to
ensure that the laminates move in phase within the frequency range of
interest. The static bending stiffness ′D1 and the mass moment of inertia
′Iω of the beam shown in Fig. 1 and having a width b, are

′ = + + +D b E H E H h Hh h[ /12 ( /2 2 /3)]cx l1
3 2 2 3 (1)

′ = + + +I b ρ H ρ H h Hh h[ /12 ( /2 2 /3)]ω c l
3 2 2 3 (2)

In general > >E El cx. The bending stiffness of one laminate is
′ =D bE h /12l2

3 . The mass per unit length of the entire beam is
′ = = +m μb b hρ Hρ(2 )l c where μ is the mass per unit area of the beam.

The cross section area of the core is =S b H· .
The beam in Fig. 1 is assumed to be excited by a force ′F x t( , ) per

unit length. Force and displacement are positive in the direction of the
positive y-axis. F1 and F2 are the resulting forces at the ends of the
beam. The shear deformation of the core induces a bending of each
laminate resulting in a bending moment Ms on the laminate and giving
an angular displacement γ . The total bending moment Mb acting on the
entire beam is caused by pure bending defined by the angular dis-
placement β. As demonstrated in [2,4] the displacement w and the
angular displacement β caused by an external force ′F per unit length of
the beam must satisfy the differential equations
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Using Eqs. (3) and (4) to eliminate β, the equation governing w is
obtained as
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Eliminating w instead gives the corresponding equation for β. For no
external force on the structure, ′ =F 0, w and β satisfy the same dif-
ferential equation.

The boundary conditions to be satisfied are also obtained from the
variational expression as shown in [2]. The requirements to some ele-
mentary boundary conditions for sandwich beams are:

Simply supported edge

= ∂ ∂ = ∂ ∂ =w β x w x0; / 0; / 02 2 (6)

Clamped edge

= = ∂ ∂ =w β w x0; 0; / 0 (7)

Free edge

∂ ∂ = ∂ ∂ = ′∂ ∂ − ′ ∂ ∂ =β x w x D β x I β t/ 0; / 0; / / 0ω
2 2

1
2 2 2 2 (8)

3. Wavenumbers

By setting = −w W i ωt k x·exp[ ( )]x in the wave equation (5) and by
assuming the external forces to be zero the dispersion relation is ob-
tained as
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There are six solutions to Eq. (9). These solutions are written
= ± ± ±k κ iκ iκ, ,x 1 2 3 where κ1 and κ3 are always real whereas κ2 shifts from

being real in the low frequency region to being imaginary for high
frequencies. For one particular structure the wavenumbers or rather
their absolute values are shown in Fig. 2. The material and geometrical
parameters for the infinite beam are: =h 1 mm; =H 10 mm;

=E 70·10l
9 Pa, =E 0.13·10c

9 Pa, =G 45·10c
6 Pa, =ρ 2700l kg/m3,

=ρ 74c kg/m3. The parallel lines in the figure define the upper and
lower asymptotes of the wavenumbers describing propagating waves.
The bottom straight line represents the wavenumber for flexural waves
propagating in a slender or Bernoulli-Euler beam with a static bending
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Fig. 1. Excitation of a sandwich beam by an external force and resulting forces
and moments.

Fig. 2. Wavenumbers for the flexural motion of a sandwich beam calculated for
two cases; 1. The mass moment of inertia of the beam included. 2. The mass
moment of inertia set to equal zero. The straight dotted lines are the low and
high frequency asymptotes for the propagating waves.
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