
Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier.com/locate/apacoust

Modal analysis using fiber Bragg gratings

Alec Hammond⁎, LeGrand Shumway, Christina Hurlbut, Frederick Seng, Ivann Velasco,
Jonathan Blotter, Stephen Schultz
Brigham Young University, Provo, UT, United States

A B S T R A C T

A new, low-cost modal analysis method, capable of extracting the structural modes, verifying numeric simula-
tions, and fine-tuning musical instruments is presented. This method uses fiber Bragg gratings and is demon-
strated by reconstructing the mode shapes of a marimba bar. To verify the practicality and accuracy of this
method, the results are compared to a numerical FEA simulation and experimental results using a scanning laser
Doppler vibrometer.

1. Introduction

Many strive to simplify and improve the tuning process for per-
cussion instruments [1]. Since the timbre, or quality of sound of an
instrument depends on the induced vibrational modes, modal analysis
tools are often used. Simulations explore the mechanical properties of
the instrument and determine what shape and material will produce the
most harmonic overtones [2,3]. The Finite Element Method (FEM), for
example, can take even the most complicated instrument designs and
analyze their frequency response [4]. Unfortunately, fabrication is
never perfect, and manufacturers rely on modal analysis tools to fine-
tune the instruments and to match the simulations.

Holographic interferometry and sinusoidal excitation, for example,
were developed to simulate and analyze modal patterns [5]. Other
techniques such as a 3D scanning laser Doppler vibrometer (SLDV),
time averaged holographic interferometry, and speckle-pattern inter-
ferometry can be used to extract the modes [6–8]. These techniques
provide very high spatial resolution and highly accurate measurements.
However, they require very expensive equipment, more test prepara-
tion, and a direct line of sight to the structure often making in situ
measurements very difficult.

Alternate approaches to tune and analyze the structural and
acoustic modes use electromechanical sensors such as accelerometers
and microphones. An accelerometer may be attached to the musical
instrument and used to extract the structural modes. Although this
approach does not require a direct line of sight to the instrument, it
does require intrusive physical attachment, provides very low spatial
resolution, and depending on placement can miss important mode
shapes. The accelerometer also mass loads the instrument shifting the
resonance frequencies and distorting the mode shapes [9]. Microphones

are an effective approach to measure the radiated acoustic frequencies
which can be used for tuning but they do not describe the mode shapes
and they often require acoustic chambers such as anechoic and re-
verberation chambers to make measurements that are not affected by
the environment. In this work, we developed and validated a new
method to overcome the deficiencies of these other methods. The
method is based on fiber Bragg gratings (FBGs) as the measurement
device. The method is very low cost, can be setup up quickly, can
provide high-spatial resolution, and is significantly less intrusive to the
test structure than some methods. An experiment was performed where
a musician played a marimba bar with FBGs attached to the bar. With
the information gathered by these FBGs, the deflection shape of the
marimba bar after each strike was reconstructed as a function of time.
These data were used to analyze both longitudinal and torsional modes.

To verify the results of this new FBG method, numerical results from
a Finite Element Analysis (FEA) and experimental results from a SLDV
were used to compare to the FBG method results.

In the remainder of this paper, the process to extract the mode
shapes as a function of time from the FBG method is presented. Next the
results from the FEA simulation and the scanning laser system are
presented. Finally, the experiment involving the FBGs is described and
the results are presented. These experiments were done using a mar-
imba bar due to the wealth of literature available regarding its beha-
vior.

2. System overview

The shape of the marimba bar is measured as a function of time by
measuring the torsion and curvature across the bar as a function of
time.
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The FBGs have a cross-sectional diameter of around 0.2 mm and a
mass of 0.6mg resulting in negligible mass loading of the test structure.
In addition, multiple sensing elements can be multiplexed serially, al-
lowing several sensors to run on the same signal line. The following
section describes how to extract the shape from curvature and torsion
using the Frenet-Serret equations. The curvature and torsion extraction
process is then outlined. Finally, the strain extraction process and in-
terrogation system are explained.

2.1. Shape extraction

The shape of the marimba bar can be modeled by its neutral axis, a
space curve running through its center. Excitation induces various
curvature and torsion modes that bend and twist the neutral axis of the
marimba bar respectively [10]. Analytical expressions, known as the
curvature κ, and torsion functions, model these modes along the length
of the bar. Since differential geometry can relate these curvature and
torsion functions to the neutral axis of the marimba bar, they can be
extracted from the neutral axis’s position function and vice versa. The
forward process is first explained for clarity. Then, the reverse process
capable of extracting the marimba bar’s shape from its curvature and
torsion measurements is presented.

The neutral axis as a space curve →r s( )is described by

̂ ̂ ̂→ = + +r s x x s y y s z z s( ) ( ) ( ) ( ), (1)

where ̂ ̂ ̂x y z, , are orthonormal unit vectors and x s y s( ), ( ), and z s( ) are
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The Frenet-Serret equations, which relate the tangent
→
T , normal

⎯→⎯
N ,

and binormal
⎯→⎯
B vectors to the corresponding curvature κ and torsion τ

functions are given by
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Using the curvature κ and torsion τ functions along with initial
conditions

→ ⎯→⎯
T N(0), (0), and

⎯→⎯
B (0), the vectors

→ ⎯→⎯
T N, , and

⎯→⎯
B , can be

solved numerically using any ODE solver. Once functions for
→ ⎯→⎯
T N, , and

⎯→⎯
B are found, the position function →r s( ) is found by numerically in-
tegrating

→
T s( ), as given by

∫→ =
→

+ →r s T s ds r( ) ( ) (0) (6)

If only one neutral axis is defined for the entire system (as is the case
with the marimba bar) then the constant→r (0) is arbitrary and can be

ignored. Once the neutral axis is reconstructed, a rotational minimizing
frame is constructed to simulate the marimba bar as a rectangular
prism, instead of a simple line. More information regarding the shape
extraction process can be found in [11].

2.2. Curvature and torsion extraction

In order to extract the curvature and torsion functions from the
optical strain sensor data, the sensors must be strategically placed to
reflect the neutral axis of the marimba bar. With the geometric con-
figuration found in Fig. 1, the neutral axis is defined along the center of
the marimba bar along the z-axis (coming out of the plane). The dis-
tances from the center of the marimba bar to sensors 1, 2, and 3 are r r,1 2,
and r3 respectively. The angle between sensors 1, 2, and 3 and the
neutral axis are θ θ,1 2, and θ3 respectively. The distance h represents the
vertical distance between sensors 1 or 2 and sensor 3, and is essentially
the thickness of the marimba bar. The horizontal distance between
sensors 1 and 2 (essentially the width of the marimba bar) is defined as
w.

A complex curvature vector at that point along the marimba bar is
calculated as given by
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where N is the number of fibers (3 in this case), ∊i is the measured strain
on the ith fiber, ri is the distance from the neutral axis, and j is the
imaginary unit −1 . The real and imaginary parts of the complex
curvature vector represent the x and y components of the net strain
field, which correspond to the transverse and longitudinal modes re-
spectively. The magnitude and phase of the complex curvature vector
represent the curvature and bend angle at that point along the marimba
bar.

Multiplexing multiple sensor triplets provides more curvature and
torsion data points along the length of the marimba bar. Fig. 2 illus-
trates three discrete ”triplets”, where each triple combination provides
one curvature vector.

Several curve fitting techniques capable of interpolating the trans-
verse and longitudinal strains along the length of the marimba bar are
available [12]. In this work, a local SDOF method is used, where a
Discrete Fourier Transform is taken of both the transverse and long-
itudinal directions for each grating triplet. Other spectral estimation
techniques, like tri spectrum averaging [12], are often used to extract a
more accurate representation of the frequency response. The frequency

Fig. 1. A cross-section of the marimba bar at a sensor triplet. The neutral axis runs
through the center of the marimba along the z-axis.

Fig. 2. Three sensor triplets that each provide one curvature and bend angle data point.

A. Hammond et al. Applied Acoustics 136 (2018) 29–35

30



Download English Version:

https://daneshyari.com/en/article/7152227

Download Persian Version:

https://daneshyari.com/article/7152227

Daneshyari.com

https://daneshyari.com/en/article/7152227
https://daneshyari.com/article/7152227
https://daneshyari.com

