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A B S T R A C T

The acoustical modes that exist within a tire’s interior cavity have an important influence on tire-road noise,
particularly structure-borne noise. The first circumferential mode is most commonly considered: it occurs when
the average circumference of the tire interior cavity is approximately one wavelength. However, that mode is
just the first of a family of circumferential and radial modes, the latter of which, in particular, are rarely con-
sidered, but which were the primary focus here. A modal expansion method was utilized to solve for the point
excitation of a fully-coupled, ring-like structural-acoustical tire model. From that model, the dispersion features
associated with the radial acoustical modes, which typically first appear between 1400 and 2000 Hz depending
on the tire geometry, were identified, and their existence was verified by making detailed measurements on tires.
The surface radial velocity of the tire was measured using a laser Doppler velocimeter (LDV), and a point-by-
point measurement method was proposed to minimize the measurement error that can occur due to the tan-
gential motion of the treadband.

1. Introduction

The acoustical modes in a tire’s interior cavity were identified
nearly three decades ago, and they have a strong influence on tire road
noise, especially structure-borne noise [1–3]. Moreover, their dynamic
influence can also be detected in the surface vibration of the tire [4].
The most prominent air cavity resonance occurs when the acoustic
wavelength is approximately equal to the average tire circumference.
The natural frequency of that mode in an automobile tire usually ranges
from 200 Hz to 230 Hz depending on the size of the tire, and that mode
is capable of creating strong structure-borne sound transmission into
the vehicle interior, through the rim, hub and suspension, due to the net
force the mode produces on the rim. Higher order resonances of this
acoustic wave in the circumferential direction occur at approximately
integer multiples of the first resonance frequency, but with generally
lower strength.

Bolton et al. [5] applied a wavenumber decomposition approach,
which used position data and the measured frequency response func-
tions of a tire’s surface transfer mobility, to experimentally identify the
treadband wave dispersion relations in a typical tire structure. In ad-
dition, multiple analytical and finite element tire models have also been
formulated to help investigate tire noise generation and radiation
problems. For example, Kropp [6] used a two-dimensional circular ring
model on an elastic foundation to simulate the vibration behavior of a

static unloaded tire, and concluded that the tire treadband vibration
was mostly tension controlled at low frequency, and behaved more like
a beam/plate in the higher frequency range. Pinnington [7] applied a
more comprehensive curved beam model to represent the tire, which
included bending stiffness, longitudinal stiffness and shear stiffness.
The model also accounted for factors like tension, pressure, speed, etc.
Realistic mobility results were obtained from the analytical model,
while dispersion relations up to 4 kHz were analyzed and explained.
More recently, Kindt et al. [8] developed a two-dimensional ring model
with the addition of axial motion represented as a single degree
freedom spring-mass system, thus allowing for axial motion of the
treadband. They were able to reproduce measured mobility results, and
further verified the analytical model by using an equivalent finite ele-
ment model up to 300 Hz. Molisani et al. [9] had earlier developed a
closed form analytical tire model using Donnell–Mushtari shell theory
to model the tire tread, and a rigid inner shell to model the wheel rim in
order to study the vibration of tire due to the cavity resonances.

Choi and Bolton [10] subsequently used a finite element model to
simulate the dynamic characteristics of a pressurized tire and showed
that it was possible to observe the influence of acoustic waves within
the tire cavity on the tire surface vibration. Note that the latter is
possible since the sound field within the tire’s internal air cavity con-
nects with the tire radially (i.e., acoustic waves in the tire cavity pro-
pagate in both radial and circumferential directions). That is, rather
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than acting simply as a mass loading while simultaneously creating a
static pressure in the radial direction, the air cavity also interacts dy-
namically with the tire in the fully-coupled case. Thus, the sound
pressure within the air cavity affects the vibration of the tire, while that
vibration, in turn, influences the sound pressure distribution within the
air cavity.

In this paper, a damped, fully-coupled tire model with point ex-
citation is described so that the influence of the higher order radial
acoustical modes can be demonstrated analytically. In conjunction with
the analytical model, experimental results measured using a passenger
car tire are presented for comparison. In particular, as previously pre-
dicted, by using a free vibration tire model [11], the contribution of
radial acoustical modes in the tire cavity to the tire surface vibration
have been measured for the first time, and it is shown that their dis-
persion characteristic can be accurately predicted by the analytical
model. Finally, some aspects of the scanning laser measurement tech-
nique and associated measurement error are illustrated qualitatively by
using the fully-coupled model.

2. Model description

The coupled structural-acoustical tire model is shown in Fig. 1. It is
a two-dimensional model, consisting of a circular rigid wheel, an an-
nular air cavity and a flexible circular tire tread. The model was as-
sumed to be stationary (i.e., non-rotating) for all the analysis presented
this paper. We have also simplified what is a three-dimensional pro-
blem, in the practical case, to an in-plane two-dimensional problem by
assuming the tire has no width, thus assuming that there is no motion of
the treadband in the axial direction. This simplification means that both
the cross-sectional flexural modes and the shell axial dynamics [12] of
the treadband are neglected, while the sidewall radial and tangential
stiffness effects are preserved. That is, in this work, the sidewalls were
replaced by distributed radial and tangential springs having constant
stiffnesses. As for the external point loads, both radial and tangential
loads were applied at the same, arbitrarily-selected point: the ratio
between the loads could be adjusted to represent a single load pointing
in an arbitrary direction. Finally, the zero-width assumption also means
that the axial acoustic modes of the air cavity have been neglected.

2.1. Equations of motion for the ring structure

The equations of motion for the coupled tire model were derived
based on a ring model coupled with a circular air cavity. As described in
Soedel’s work [13], the ring structure is assumed to be thin and to
conform to Love’s assumptions. Deformation is assumed small, shear
strains are assumed to be zero, rotatory inertia is ignored and the mid-
surface of the ring remains the mid-surface after bending. Damping
effects were considered here by introducing a complex Young’s mod-
ulus, E(1+ jη), with a loss factor, η, which is also referred to as the
hysteretic damping factor. The two variables representing the radial
and circumferential displacements of the ring are denoted as w and u,
respectively.

The equations of motion for the ring structure with internal static
pressure loading and distributed stiffness is given by Huang and Su [14]
as
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where ur and uθ are the radial and tangential displacement responses, R
is the mean radius of the tire structure, kθ and kr are the circumferential
and radial distributed stiffnesses (and their values were chosen ac-
cording to Yamazaki and Akasaka’s research [15] on tire sidewall
stiffness), qθ and qr are the distributed loads applied to the ring, p0 is the
static inflation pressure in the tire, and σθ is the pretension force in the
circumferential direction due to p0. Here, we assume that the air
loading is always pointing from the tire axle towards the tire surface in
the radial direction. The normal mode shapes assumed for the tire
structural displacement, associated with a circumferential wave-
number, n, are
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where An and Bn are modal amplitude coefficients.
Note that the parameter values used in the computations presented

in later sections are given in Table 1. The material-related properties
other than kr and kθ were taken from Kim and Bolton [16], while the
geometry-related properties were measured from one of the tires used
in the measurements reported below.

2.2. Air cavity expressions

The air cavity is the annular space formed between the rigid wheel
and the flexible tire structure. From Morse and Ingard’s Theoretical
Acoustics [17], the differential equation governing wave propagation in
cylindrical coordinates can be written as
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where ψ is the velocity potential and c0 is the ambient, adiabatic sound
speed in the cavity. The velocity potential is assumed to be of the form
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by separation of variables. Due to the circular geometry of the air
cavity, we have

Fig. 1. Analytical model of a coupled tire subject to point excitations.

Table 1
Material properties of the coupled tire model.

Parameter Value Parameter Value

Young’s Modulus E [Pa] 4.8× 108 Pressure p0 [pa] 2.06× 105

Density ρ [kg/m3] 1200 Inner Radius r1 [m] 0.205
Thickness h [m] 0.008 Outer Radius r2 [m] 0.338
Radial stiffness kr [N/m] 2×106 Tangential stiffness kθ [N/

m]
1×106

Loss factor η 0.2
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