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A B S T R A C T

Direction of arrival estimation (DOA) of multiple acoustic sources has been used for a wide range of applications,
including room geometry inference, source separation and speech enhancement. The beamformer-based and
subspace-based methods are most commonly used for spherical microphone arrays; however, the former suffers
from spatial resolution limitations, while the later suffers from performance degradation in noisy environment.
This letter proposes a multiple source DOA estimation approach based on the maximum likelihood method in the
spherical harmonic domain and implements an efficient sequential iterative search of maxima on the cost
function in the spherical harmonic domain. The proposed method avoids the division of the spherical Bessel
function, which makes it suitable for both rigid-sphere and open-sphere configurations. Simulation results show
that the proposed method has a significant superiority over the commonly used frequency smoothing multiple
signal classification method. Experiments in a normal listening room and a reverberation room validate the
effectiveness of the proposed method.

1. Introduction

The rotationally symmetric spatial directivity makes the spherical
microphone array an appealing structure in many audio applications,
among which the acoustic source localization, or the direction of arrival
(DOA) estimation, plays an important role in speech enhancement [1],
room impulse response analysis [2], and room geometry inference [3].

Various DOA estimation methods have been proposed, which can be
generally classified as beamformer-based [2–5] and subspace-based
[6–8]. The beamformer-based methods, such as those based on plane-
wave decomposition (PWD) [4] and the minimum variance dis-
tortionless response (MVDR) beamformer [3], have the benefit of
straightforward implementation, but suffer from low spatial resolution.
The subspace-based methods, such as the multiple signal classification
(MUSIC) [7], provide a high spatial resolution; however, they suffer
from severe performance degradation when the signal-to-noise ratio
(SNR) is low [6,9]. In order to improve the robustness of the DOA es-
timation of coherent sources, wideband expansion based on focusing
matrices or frequency smoothing (FS) techniques has to be employed
[8].

We proposed a maximum likelihood DOA estimation method in the
spherical harmonic domain (SHMLE) recently, which is an attractive
alternative DOA estimation method with advantages of high spatial

resolution, strong robustness and straightforward wideband im-
plementation [10]. The proposed SHMLE method only considered one
source situation, while two or more sources often need to be localized
in many practical applications. In this letter, the SHMLE method is
extended to estimate the DOA of multiple sources. Generally speaking,
the DOAs can be determined by searching maxima on the maximum
likelihood (ML) cost function. However, the commonly used grid search
method is only effective in finding the global maximum, which restricts
its applicability in one source situation. To achieve effective DOA es-
timation of multiple sources, an efficient sequential iterative search
method is introduced in the spherical harmonic (SH) domain. Experi-
ments using a 32-element spherical microphone array validate the
feasibility and superiority of the proposed method.

2. Method

2.1. Signal model in the spherical harmonic domain

The standard spherical coordinate system is utilized with r, θ and ϕ
representing the radius, the elevation angle and the azimuth, respec-
tively. The sound field is assumed to be composed of plane waves from
L sources with Ψl=(θl, ϕl) (l=1, 2, …, L) being the DOA of the l-th
plane wave and sl(k) being its amplitude, where k denotes the wave
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number. The Q element spherical microphone array is distributed uni-
formly on a sphere with a radius of a centred at the origin of the co-
ordinate system, and Ωq=(θq, ϕq) is the angle position of the q-th
microphone [11].

The sound pressure of the q-th microphone for the incident waves
can be expressed as [12]
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where kl=−k(cosϕlsinθl, sinϕlsinθl, cosθl)T and rq= a(cosϕqsinθq,
sinϕqsinθq, cosθq)T denote the wave vector of the plane wave and po-
sition of the q-th microphone in the Cartesian coordinate. Yn, m is the
spherical harmonic of order n and degree m, N is the highest order
number for the plane wave decomposition and satisfies (N+1)2 < Q.
The superscript (∗) denotes complex conjugation. bn(k) is a function of
array configuration [11]. Eq. (1) can be expressed in matrix form as
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where the superscript (T) denotes the transpose.
In the presence of additive noise, the sound pressure at all Q mi-

crophones can be expressed as
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p(k,Ω)= [p(k,Ω1), p(k,Ω2), …, p(k,ΩQ)]T is the vector of the sound
pressure of Q microphones, and ν(k)= [ν1(k), ν2(k), …, νQ(k)]T is the
additive sensor noise added to the system. The noise is assumed to be
complex Gaussian, to be uncorrelated with the signal, to have zero
mean, and for simplicity, to be spatially white with a covariance matrix

=k σR I( )ν ν Q
2 , where σν

2 is the unknown noise variance and IQ is the
identity matrix of order Q×Q.

For the uniformly spatial sampling configuration used in this letter,
the following orthogonal relation holds (note that (N+1)2≤Q) [11]
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The SH transform can be carried out by multiplying both sides of Eq.
(9) from the left by Y Ω( )π

Q
4 H , which yields
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where pnm(k) is a vector containing (N+1)2 SH domain coefficients,
i.e.,
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The second term on the right side of Eq. (12) is the noise expressed
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where E(⋅) denotes the statistical expectation. Apparently, the noise
model in the SH domain is also zero-mean complex Gaussian.

2.2. Sound source DOA estimation in the spherical harmonic domain

Define = σΘ Ψ S[ , , ]n
T T 2 T as the vector of all the unknown parameters,

where = …k kS s s[ ( ) , , ( ) ]min
T

max
T T contains the amplitudes of the source

signals with kmin and kmax representing the minimum and maximum
wave numbers and satisfying ka≤N. Throughout this paper, Ψ, s and
σν

2 are assumed to be deterministic and unknown, while the observed
data pnm is considered random [13]. The likelihood function of pnm

given Θ in the SH domain can be expressed as [9,13]
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where Vnm(k,Ψ)= B(k)YH(Ψ) and |⋅| denotes the matrix determinant.
The solution to Eq. (16) is given by [10]
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where (⋅)†denotes pseudo-inverse operation.
Define the cost function as
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then the wideband estimator can be described as

̂ = JΨ Ψargmax ( ).
Ψ (19)

The SHMLE has the remarkable benefit of easy wideband im-
plementation as described in Eqs. (17–19). This is superior over the
other methods in the spherical harmonic domain, which usually require
a quite cumbersome frequency smoothing (FS) technique to realize
wideband DOA [8]. Compared with the maximum likelihood method in
Ref. [14], the division of bn(k) is avoided, which makes the method
proposed in this letter suitable for both rigid-sphere and open-sphere
arrays. Note that for open-sphere arrays, bn(k) is close to 0 at fre-
quencies corresponding to the zeros of the spherical Bessel functions.

2.3. DOA estimation of multiple sources

For one source situation, Eq. (19) can be solved using the grid
search method. For P grid points and L sources situation, the compu-
tational load of Eq. (19) is O(PL), which is computationally prohibitive.
Moreover, effective discrimination of the multiple maxima in the cost
function is very difficult even if repetitive traversal is feasible. To al-
leviate these problems, a nonlinear optimization algorithm is applied in
the SH domain with implementation of the alternating projection
method [15]. The alternating projection method avoids the multi-
dimensional search by estimating the location of one source sequen-
tially while fixing the estimates of other source locations from the
previous iteration.

For nonlinear optimization methods, the initial locations of the
sound sources is critical to reach the global maximum. In this letter, the
simplified grid search method is adopted to find initial locations, and
the procedure of the method is described as follows.

(1) Estimate the location of the first source s1 on a single source grid
with
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